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Abstract
This position paper argues that to obtain reliable
embodied reward models, the community must in-
vest in “bad” robot data: failed, suboptimal, error-
prone, and even hazardous behaviors. While re-
ward models are central to any foundation model’s
lifecycle, today’s embodied reward models are
trained primarily on successful behaviors. We an-
alyze three state-of-the-art embodied reward mod-
els and find that they systematically over-reward
behaviors that real human evaluators would penal-
ize, including unsafe interactions, poor execution,
and shortcut strategies that only superficially sat-
isfy tasks. We attribute these failures to a key
data gap: the scarcity of negative embodied data
which is costly to collect and often filtered out
or withheld in existing robotics datasets. Further-
more, we show that even modest exposure to real
bad behavior data can improve alignment with hu-
man preferences and reduce costly false positives.
We therefore call on the embodied AI community
to curate and release their bad robot data, build
synthetic bad data generation engines, develop
more decentralized physical evaluation systems,
and design benchmarks for fine-grained embodied
reward model evaluations.

1. Introduction
Reward models are central to the lifecycle of any founda-
tion model, from reinforcement learning-based post-training
(Ouyang et al., 2022), to test-time compute (Snell et al.,
2024), to large-scale evaluation (Wang et al., 2023). For
example, in non-embodied domains such as large lan-
guage models (LLMs) and vision-language models (VLMs),
learned rewards (Christiano et al., 2017; Ziegler et al., 2019;
Ouyang et al., 2022) have been key for hard-to-verify tasks
like open-ended generation, dialogue, summarization, and
perceptual reasoning (Yue et al., 2025; Stiennon et al., 2020;
Li et al., 2024).
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In the past two years, embodied domains such as au-
tonomous driving and household robotics have started de-
veloping foundation models with architectures and training
paradigms that mirror LLMs and VLMs; a prime example
are vision–language–action models (VLAs) (Black et al.,
2024; Intelligence et al., 2025; Wang et al., 2025). Similar
to the non-embodied tasks described above, in robotics the
quality of a behavior is often subjective, hard-to-specify, or
defined by fine-grained physical consequences (e.g., tear-
ing part of a napkin while folding it). Thus, there is a
growing demand for general-purpose reward models that
can evaluate a physical agent’s behavior directly from vi-
sual observations and a textual task specification (Tan et al.,
2025; Lee et al., 2026), reducing the need for costly human
evaluation (Atreya et al., 2025) while providing signals for
post-training (Amin et al., 2025) and test-time compute (Wu
et al., 2025; Kwok et al., 2025).

However, today’s embodied reward models fall short of eval-
uating the nuances of physical behavior in the way humans
do. Using real robot videos and human evaluator labels
from the RoboArena benchmark (Atreya et al., 2025), we
experimentally show that three state-of-the-art (SOTA) em-
bodied reward models systematically over-reward behaviors
that human evaluators would reject, including low-quality
execution, unsafe interactions, and “shortcut” strategies that
mimic completion while violating human preferences. The
gap between the reward models and human evaluators also
widens as the physical task complexity increases from sim-
ple pick-and-place to complex bi-manual tool use tasks.

We argue that today’s embodied reward models are overly-
optimistic because we lack “bad” embodied behavior data
necessary for calibration. In non-embodied domains, LLMs
and VLMs benefit from exceptionally diverse and scalable
reward-training ecosystems in which “bad” data (from toxic
language to logical fallacies) is abundant and cheap to gen-
erate, enabling a sufficiently large coverage of outcomes
and their (human) evaluations. However, embodied data col-
lection is bounded by wall-clock time and hardware safety,
making failures, and dangerous behaviors undesirable to
collect at scale. Even when failures do occur, they are rarely
preserved in the public data ecosystem, as the dominant
imitation-based learning paradigm prioritizes expert demon-
strations and intentionally filters out negative data (O’Neill
et al., 2024). Thus, current embodied AI datasets used for re-
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ward model training are biased toward successful behaviors,
resulting in models that are systematically over-optimistic.

Our position is that if we want to have good embodied
reward models, we need to invest in more “bad” robot
data. We need a deliberate shift away from expert-only
datasets and toward the intentional collection and re-
lease of dangerous, failed, noisy, and error-prone robot
data to obtain reliable embodied reward models. We
demonstrate that even prompting SOTA embodied reward
models with real robot failure videos (rather than just textual
descriptions of “bad” behavior) as in-context examples re-
sults in better preservation of human preferences and fewer
high-impact false positives. We call on the robotics and em-
bodied AI community to release curated, large-scale robot
failure datasets, develop new methods for the synthetic gen-
eration of “bad” robot data, develop more decentralized,
physical evaluation systems, and develop benchmarks for
evaluating general-purpose embodied reward models.

2. Setup: Embodied Reward Models
An embodied reward model assigns (a sequence of) scalar
scores to robot behavior conditioned on some task context.
Formally, let the task context c ∈ V be a free-form language
instruction. Let a T -length robot behavior be represented
by a sequence of high-dimensional observations, τ := o1:T ,
sensed by the robot’s intrinsic and extrinsic sensors (also
referred to as a rollout). For example, in tabletop robotic
manipulation, each ot typically consists of RGB images
collected by a third-person and wrist-mounted camera.

We define an embodied reward model as a parame-
terized map from observations and context to rewards:
Rθ(o1:T ; c) → r1:T , where rt ∈ R,∀t ∈ [0, T ] is a real
value measure of how well the behavior aligns with the
user’s original task instruction c. For example, this can
include task progress, execution quality, and safety. The
learnable parameters of the model are denoted by θ.

Let an embodied foundation model be defined as a pa-
rameterized map from an observation and task context to a
distribution over actions, πϕ(a | o, c), where a := at:t+H

is an H-step future sequence of actions starting from any
timestep t, and ϕ are the parameters. After an embodied
foundation model is pre-trained via imitation on a large
dataset of observation-action labels (O’Neill et al., 2024;
Khazatsky et al., 2024), the reward function plays a role
during post-training and during deployment-time.

During post-training, the reward function enables
reinforcement-learning (RL) to improve the precision of
the foundation model or to learn new skills (Tian et al.,
2024; Zhang et al., 2024; Ghasemipour et al., 2025; Zhang
et al., 2025; Tan et al., 2025; Zhai et al., 2025; Amin et al.,
2025; Xiao et al., 2025). Mathematically, given an initial

observation o0, this process entails solving the following
problem:

ϕ∗ = argmax
ϕ

Eo1:T∼P(·|o0,πϕ)

[
Rθ(o1:T ; c)

]
,

where o1:T ∼ P(· | o0, πϕ) defines the distribution over
future observations (i.e., rollouts) induced by the embodied
foundation model πϕ under the current model parameters.
The reward model scores how aligned the current rollouts
are with the task context, and thus directly determines how
the policy πϕ is improved.

During test-time compute, the embodied foundation model
is frozen and samples a ∼ πϕ(· | o; c) are taken from the
model; let a set of K action samples be denoted by {ai}Ki=1.
The reward model scores each action sample and executes
only the actions that maximally align with the task (Gao
et al., 2024; Wu et al., 2025; Dai et al., 2025):

a∗ = arg max
{ai}K

i=1

Eot:t+H∼P(·|ot,ai)

[
Rθ(ot:t+H , c)

]
,

In both regimes, the reward model’s calibration establishes
an upper-bound for how much the foundation model can be
improved, or how reliably it can be steered at deployment-
time. As we show in the next section, despite current embod-
ied reward models being able to evaluate temporal progress
in the robotics tasks, they systematically over-reward behav-
iors that humans would reject, such as low-quality execution,
unsafe interactions, or “shortcut” strategies that mimic com-
pletion while violating implicit preferences.

3. Current Embodied Reward Models Fail as
Task Complexity Increases

We evaluate three of the latest general-purpose and open-
sourced embodied reward models that represent the main
families of models used in robotics.

(1) Preference-based reward models trained with syn-
thetic negatives. These methods construct pseudo-negative
or failure-like rollouts from logged expert trajectories,
e.g., by shuffling or perturbing successful executions.
Preference-learning objectives are used to train the model
from the induced contrasts, extracting more supervision
per costly interaction. In this work, we focus on the
ReWind (Zhang et al., 2025) model which is trained via:
θ∗ = argminRθ

Ec,τ∼D

[∑T
t=1(rt−

t
T )

2+(r−t )
2
]
, where

r1:T = Rθ(o1:T ; c) are the model predictions for a given ob-
servation sequence, and r−1:T = Rθ(o

−
1:T ; c) are reward pre-

dictions for a synthetic negative observations sequence, o−1:T .
We follow the open-sourced code from (Zhang et al., 2025)
and train ReWind on the large-scale Open-X embodiment
dataset (O’Neill et al., 2024) of expert robot demonstrations.
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(2) Zero-shot VLM rewards. An increasingly popular
alternative is to cast reward prediction as an embodied rea-
soning task. These approaches leverage VLMs as zero-shot
reward predictors by first asking the model to articulate its
evaluative reasoning (e.g., perform a frame-level analysis of
o1:T ), and then generate a dense reward sequence grounded
in that reasoning. The approach we follow in this work is
called GVL (Ma et al., 2024), and we query GPT-5 (Ope-
nAI, 2025) as the VLM. We show the detailed prompt in the
Appendix A.

(3) Fine-tuned VLM rewards. Finally, VLMs have also
been fine-tuned to be reward predictors, aiming to trans-
fer the VLM’s semantic priors into task-specific embod-
ied scoring functions. Here, fine-tuning signal typically
comes from automatically or heuristically constructed task
progress labels (Amin et al., 2025; Lee et al., 2026). The pre-
trained, open-sourced model we use in this work is called
Dopamine (Tan et al., 2025) which fine-tunes a pre-trained
VLM through regression to predict rewards (Appendix A).

3.1. Evaluation Protocol

Our evaluation dataset Deval consists of a small number of
real robot rollouts drawn from the same task description c
and (similar) initial conditions: ({oi1:T }Ni=1, c) ∈ Deval. We
aim to quantify the “goodness” of the predicted rewards
r1:T from any of the above reward models. One of the key
challenges for doing reward evaluation is that we do not
have access to dense oracle rewards. Prior works often use
the Value-Order Correlation (VOC) metric (Ma et al., 2024;
Tan et al., 2025; OpenGVL Team, 2025). It measures the
rank correlation (e.g., Spearman) between the predicted val-
ues and the ground-truth temporal order of frames in expert
videos. Thus, larger VOC scores indicate better temporal
progress understanding. However, this metric often misses
fine-grained aspects of how a task is being executed. For
example, consider the behavior shown on the left-hand side
of Fig. 2. This robot behavior exhibits coarse temporal
progress (e.g., moving an object from one position to an-
other) but it causes a safety violation along the way (e.g.,
toppling the blue bowl).

Therefore, in our evaluation, we treat human judgments—
specifically, pairwise human comparisons of two rollouts
sampled from the dataset oA1:T , o

B
1:T ∼ {oi1:T }Ni=1—as the

ground-truth signal for evaluation. For each task, we aggre-
gate human pairwise comparisons on the robot’s behavior
into an ordinal preference ranking over trajectories. We
then compute a reward model’s return for each rollout by
accumulating per-step rewards, inducing a corresponding
ranking. Each reward model is evaluated by how well its in-
duced ranking agrees with the human ranking. We describe
the procedure and metrics below in detail.

Pick/Place: Pick up the red tape

Push/Pull: Push the ball

Open/Close: Close the top drawer

Reorient Objects: Rotate the bread 90 degrees 

Pour: Pour the yellow ball from the cup to the bowl

Tool Use: Use the black wiper to wipe the board 

Stack Objects: Stack the red bowl on the white bowl

Figure 1. Tasks. We categorize tasks into seven categories of in-
creasing complexity: Pick/Place, Push/Pull, Open/Close, Stack
Objects, Reorient Objects, Pour Liquid, Tool Use. The videos
above are from RobotArena (Atreya et al., 2025).

Robot Behavior & Human Evaluation Dataset. We
use the real robot behaviors and human evaluations from
RoboArena (Atreya et al., 2025), a decentralized evaluation
framework for generalist robot policies. Tasks are predomi-
nantly performed by robotic manipulators, but deployment
conditions and tasks are varied from simple picking tasks
(e.g., “Pick up the red paper”) to more precise motions (e.g.,

“Pour the nuts from the red cup onto the plate”). Specifically,
we study seven task categories of increasing complexity
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(visualized in Fig 1): Pick/Place objects on a tabletop,
Push/Pull interactions with rigid objects, Open/Close inter-
actions with articulated objects (e.g., door), Stack Objects
on top of each other, Reorient objects to new poses, Pour
items from one container into another, and Tool Use (e.g.,
picking up a whiteboard marker and erasing a whiteboard).

In each RoboArena evaluation trial, an evaluator selects a
task as a natural-language instruction that describes one of
these tasks, and the benchmark queries n policies {π1(a |
o, c), . . . , πn(a | o, c)} (hidden, pre-trained, and randomly
selected) each of which is executed on the same robot with
similar initial conditions. The full rollout consisting of
both observations and actions are logged for the human
evaluator to inspect. The human evaluator assigns each
rollout a single continuous performance score (e.g., 0 for
failure, 100 for success, and intermediate values for partial
success). In addition, the evaluator provides an explicit
preference judgment (i.e., which rollout is better) along
with a short rationale in text describing why (e.g., stability
of the grasp, placement quality, safety-relevant contact, or
shortcut behaviors) on a representative A/B comparison
(two rollouts from the same task context that illustrate a
meaningful qualitative difference).

In our work, for any tuple ({oi1:T }ni=1, c) ∈ Deval, let the
corresponding set of scores given by a human evaluator
be denoted by {yi}ni=1 where yi ∈ [0, 100]. We use these
human-annotated rollout scores to induce a ground-truth
ordering over rollouts within each task context, and curate
an evaluation set that spans the seven task categories of
increasing complexity and nuance described earlier.

Evaluation Metrics. Given a reward model Rθ, we com-
pute the model’s score ŷi for each rollout by accumulating
the predicted per-step rewards: ŷi =

∑
t r̂t,where r̂1:T =

Rθ(o1:T ; c). We first measure the human-model disagree-
ment by looking at the pairwise ranking mismatch. Specifi-
cally, for a task context c, let the set of rollout pairs with a
strict human preference be: Pc = {(i, j) : i < j, yi ̸= yj}.
For any such pair (i, j) ∈ Pc, let the sign of the hu-
man’s preference be denoted by sijH = sign(yi − yj) and
the sign of the reward model’s preference be denoted by
sijM = sign(ŷi − ŷj). Finally, the per-task human-model
disagreement: Dc = 1

|Pc|
∑

(i,j)∈Pc
1
[
sijH ̸= sijM

]
, which

is minimized (Dc = 0) when the reward model agrees with
the human preference direction on every strictly preferred
pair in Pc, and maximized (Dc = 1) when it disagrees on
all such pairs. We measure the overall preference order-
ing accuracy by aggregating the disagreement across tasks,
weighted by the count of pairs in Pc: A = 1−

∑
c |Pc|Dc∑

c |Pc| .

Intuitively, A is maximized (A = 1) when the reward-
induced ordering matches the human ordering for every
comparable pair, and decreases toward 0 as the model in-

creasingly reverses human preferences.

3.2. Results

Quantitative Results. Fig. 3 visualizes the preference
ordering accuracy of ReWind, GVL, and Dopamine across
increasingly complex and nuanced-to-evaluate tasks. On vi-
sually simplistic goal-reaching tasks such as Pick/Place, all
models achieve relatively high preference-ordering accuracy
(0.72–0.77), indicating they can often rank clearly different
outcomes correctly. However, performance drops steadily as
tasks require finer execution quality, temporal coordination,
or implicit constraints. For categories like Reorient Object
and Pour, accuracy falls into the low-to-mid 0.6 range, and
for the most nuanced task, Tool Use, performance is only
modestly above random guessing (0.52–0.62).

Qualitative Results. To better understand why the reward
models degrade, consider the example (not from RoboArena,
but collected on our own hardware) shown on the left of
Fig. 2 for the task context c=“Use two hands to lift the lid
and carefully put it on the table without colliding with the
bowl.” The robot video appears to make progress along the
task (hands reach the lid, the lid is lifted, and lid approaches
the table), yet the execution violates the instruction to not
collide with the bowl: the lid knocks into the bowl. Nev-
ertheless, all reward models predict high reward values. In
other words, the reward model over-weights progress-like
signals that only correlate with success in its training dis-
tribution, but it under-penalizes the negative behavior that
humans use to distinguish acceptable from unacceptable
execution. A similar example is shown on the right side of
Fig. 2 for the task context c=“Pour the nuts from the red cup
onto the plate.”. The robot rollout appears to make steady
progress yet nuts spill outside the plate. Despite this failure
(shaded region), both GVL and ReWind continue to assign
increasing per-frame rewards.

Analysis. A high-quality reward function ultimately re-
quires understanding the contrast between “good” and “bad”
behavior. All families of reward models described in Sec. 3
heavily rely on non-embodied priors (e.g., from large-scale
VLM pre-training) or heuristics (e.g., hand-engineered crite-
ria, synthetic counterexamples) as substitutes for the strong
learning signal that would come from explicit negative em-
bodied failure data. For example, ReWind constructs nega-
tives by perturbing successful rollouts, but such negative ex-
amples cannot faithfully represent closed-loop failure modes
that dominate real deployments. GVL inherits generic
scoring criteria from VLM pretraining rather than user cal-
ibration; consequently, it is poorly calibrated on safety-
and quality-critical failures that are underrepresented in the
pretraining distribution. Dopamine relies on heuristically
constructed supervision (progress- or end-state surrogates),
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Failure: Collision with bowl.

GVL Dopamine ReWind

Figure 2. Dense Reward Predictions from Embodied Reward Models. We evaluate three SOTA embodied reward models on real robot
failure videos. Top: Representative failure frames. Red circles highlight the human-identified failure event (e.g., collision with the bowl or
the nuts spilled outside of the plate). Bottom: Per-frame predicted reward. The shaded interval indicates the visualized negative-behavior
segment. All reward models assign increasing reward values during the video, even during the failure frames.

Figure 3. Preference Ordering Accuracy as a Function of Task.
We measure how often each reward model’s induced returns
recover the human ordering over rollouts (fraction of human-
preferred pairwise comparisons correctly ranked). Tasks are ar-
ranged in increasing complexity and the dashed line indicates ran-
dom guessing (0.5). Reward models (GVL, Dopamine, ReWind)
approach random guessing as the task complexity increases.

which is biased to favors behaviors that are “getting there”
but overlook the fine-grained quality of the execution or the
safety properties of the behavior.

Implications. As discussed in Section 2, the reward model
is the optimization objective in both RL post-training and
test-time compute (and, of course, autonomous evaluation).
Thus, reward model calibration sets an upper-bound on
performance and on evaluation. As embodied foundation
models begin generating increasingly complex behaviors,
our results suggest a widening gap between model capabil-

ity and the capacity of current reward model paradigms to
evaluate them.

4. Injecting “Bad” Robot Data into Embodied
Reward Models Improves Performance

Our position is that if we want good embodied reward
models—especially ones that can evaluate complex robot
behaviors—we need to invest in more “bad” robot data. To
substantiate this claim, in this section, we demonstrate that
even modest amounts of “bad” robot data can improve the
calibration of off-the-shelf reward models and boost their
alignment with real human preferences. We focus on GVL
(Ma et al., 2024) because this model enables us to inject
negative examples via in-context learning, without any re-
training. We control how the negative data is fed to the
model: from easy-to-generate but lossy textual descriptions
of robot failures, to videos of real robot failures, to also
prompting with dense reward labels.

Text Descriptions of Failure. For each task in our evalu-
ation dataset, we retrieve the corresponding free-form text
feedback provided by the RoboArena evaluators. We use
an LLM to distill the feedback into a concise but general
summary of common failure behaviors for that task (e.g.,

“the robot grasps the correct object but fails to release”, “ap-
proaches the goal but contacts a forbidden region,” “moves
toward completion while leaving the object unstable”). We
prompt GVL with these failure descriptions as explicit neg-
ative examples, before asking the model to score a new
behavior.

Text Descriptions & Robot Videos of Failures. Building
on the text-only setting, we additionally pair each failure
description with a real robot video which exhibits this failure
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Figure 4. Effect of In-Context Negative Robot Data on Reward
Accuracy. We use the GVL model throughout (Ma et al., 2024).
Text-only negatives provide little to no improvement, while ground-
ing negatives in the actual failure visuals improves ordering on
simpler categories. The largest gains come from dense reward
examples of negative behavior, especially in more nuanced cate-
gories where “bad” behavior is defined by execution quality and
safety constraints rather than coarse task progress.
mode. Concretely, for each task, we pair the distilled failure
cues with sampled observation snippets. These text–image
pairs are provided as in-context examples to the GVL model.
Our hypothesis is that videos provide finer-grained features
for evaluating whether a behavior is good or bad; features
about time-varying behavior that are difficult to capture
using natural language alone.

Text Descriptions, Robot Videos, and Dense Reward La-
bels of Failures. Finally, in addition to text descriptions and
videos, we also provide dense per-timestep rewards associ-
ated with a negative behavior example. Since oracle dense
rewards are unavailable (recall, RoboArena only provides a
single scalar value for the entire robot behavior), we perform
preference-guided self-distillation to obtain proxy dense re-
wards. Intuitively, we use sparse human preferences from
RoboArena to select between different dense reward labels
produced by the reward model, and return a dense reward
that is maximally aligned with the real human preferences.
Specifically, for each A/B test rollout pair in RoboArena’s
evaluation task, we query the GVL model multiple times
(10 samples in our implementation with a temperature of
0.8) to obtain a set of dense reward sequences, r1:T , for
the same pair of rollouts. Each candidate reward sequence
induces an overall return by summing rewards over time,
and thus an implied ordering between A and B. We retain
the reward sequence whose induced ordering matches the
human preference from RoboArena, and use the reward se-
quence of the less-preferred robot behavior as an in-context
example of how negative behavior should be evaluated.

Results. In Fig. 4, we show how different in-context nega-
tive examples affect GVL’s ability to preserve human pref-
erence orderings. Although text descriptions of failures are
easy to generate (and are conceptually related to Constitu-

tional AI approaches to injecting understanding of harm-
ful consequences into foundation models (Bai et al., 2022;
Sermanet et al., 2025)), they do not significantly improve
GVL’s evaluation quality. This suggests that despite the
powerful LLM backbone, current SOTA VLMs still struggle
to ground textual criteria into concrete physical, embodi-
ment, and viewpoint-specific robot behaviors.

Prompting GVL with text and robot failure videos results
in a ≈ 8% meaningful accuracy improvement on simple
tasks like Pick/Place and Push/Pull. When inspecting these
tasks, we see that failures tend to be visually “obvious”:
grabbing the wrong object, completely missing a grasp, or
failing to place an object in the correct location. Grounded
counterexamples help disambiguate what “bad” behavior
looks like under the task context. As illustrated in the left
example of Fig. 5, providing text along with a representative
failure rollout enables GVL to sharply down-weight the
corresponding behavior, assigning near-zero rewards after
failure occurs where the base model would otherwise remain
overly optimistic.

However, as the task complexity increases towards Tool
Use, the goodness of behavior becomes more subtle: for
example, the robot’s behaviors appear to make progress, but
violate implicit quality or safety criteria, like selecting un-
stable places to put objects, making unsafe contact with the
environment, or short-cutting execution. Here, the negative
text and video examples are no longer enough to improve
the performance of the reward model. However, this is
exactly where dense negative reward examples are most ef-
fective: by providing a temporally resolved penalty trace for
a human-rejected rollout, the reward model receives a con-
crete calibration signal for how these nuanced constraints
should be reflected in reward space, rather than relying on
coarse progress cues or a small number of visually grounded
negatives. The right example in Fig. 5 demonstrates this
effect. The rollout initially looks plausible and “on track,”
but the robot drops the wiper within the highlighted failure
window; only when provided with a dense negative reward
example does GVL sharply down-weight the trajectory at
the failure moment. Overall, negative reward examples re-
sult in an approximate 10% accuracy improvement even in
the hardest Tool Use and Pour Liquid tasks.

5. Open Problem: Embodied Preference
Datasets with Diverse Failures

Our experiments in Section 3 showed that embodied reward
models become more calibrated when they see real failure
robot data and when they are informed of how “bad” a
behavior appears from human feedback. It stands to reason
then, that we need to contend with two problems if we
want good embodied reward models: (1) where do we get
more “bad” robot data from? and (2) how do we get human
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Failure: Dropped wiper.

Task: Pick up the black wiper and wipe the text off the whiteboard.

GVL GVL + text failure GVL + text-video failure GVL + dense reward of failure

Figure 5. Influence of “Bad” Robot Data on Reward Predictions. We prompt the GVL reward model with three levels of in-context
negative data: text-only, text-video pairs, and dense reward labels of robot failure videos. Videos of real robot failures along with dense
reward labels helps the model catch subtle errors, like the robot dropping the black wiper at frame 20 on the right-hand video.

feedback on this data?

In theory, one might hope to scale embodied data and human
feedback collection by borrowing from the LLM playbook:
run many replicas of a foundation model in parallel, have
each instance generate diverse rollouts (mixture of good and
bad), upload logs to a central database, and then perform
large-scale offline evaluation in parallel. This strategy works
exceptionally well in non-embodied settings because the en-
tire loop is highly parallelizable: 1) sampling model rollouts
is a purely digital workload that scales with access to more
compute, 2) the foundation model directly generates human-
consumable outputs (i.e., text, images) that are immediately
“judgeable”, and 3) preference labeling can be distributed
across annotators who can directly compare logged outputs
with high throughput. Thus, negative data generation has
a primarily digital (rather than physical) impact, and the
model generations directly enable scalable human feedback.

However, in embodied settings like robotics, producing the
rollouts is the dominant cost. First, the embodied founda-
tion model generates actions, at:t+H , which are not easy
to evaluate directly; furthermore, actions and outcomes are
not one-to-one mapping due to stochasticity of the world).
Thus, the embodied foundation model’s generations need
to be translated to physical outcomes for evaluation (i.e.,
the observations {o1:T }). Today, there still exists no univer-
sally good substitute for this translation process except for
actually executing the generated actions on robot hardware.

6. Alternative Views

The core problem isn’t data balance; its observability.
Perhaps the reason why our embodied reward models are
failing to evaluate behaviors as accurately as humans do is
because they don’t get access to the same rich, low-level

embodied signals: forces, tactile signals, sound, tempera-
ture, smell, and taste. In other words, our current embodied
reward models don’t have sufficiently rich representations
of the world, and so the key variables needed for evaluations
are unobservable. Limited observability is undoubtedly a
challenge, and today’s reward models have only scratched
the surface of all modalities of embodied data. However,
observability issues cannot fully explain the systematic over-
rewarding we observe in our experiments, since humans are
able to accurately evaluate these behaviors even without
access to low-level embodied signals like forces, tactile, etc.

“Bad data” is neither scalable nor necessary; uncertainty
quantification of the reward model is. Obtaining good
coverage of robot failures via the deliberate collection of
“bad” data is fundamentally limited, especially in safety-
critical and human-centered environments. Instead of in-
vesting in this costly data collection, an alternative approach
is to leverage uncertainty quantification (UQ) (Kuleshov
et al., 2018; Angelopoulos et al., 2023) to achieve more
calibrated reward models. Prior works have demonstrated
that UQ methods can improve the robustness, reduce over-
confidence, and improve alignment of reward models in
the large language domain (Leng et al., 2025; Park et al.,
2025). However, with access only to positive data, it is
extremely challenging to calibrate the false positive rate of
a reward model, as false positives are defined with respect
to unobserved negative outcomes.

We should use verifiable rewards, not learned ones. Per-
haps learned reward models are the wrong target, as they
require strong coverage of outcomes that are hard to get
in embodied settings. Instead, we should design verifiable
rewards: for example, using Signal Temporal Logic (STL)
to specify the reward criteria (Kress-Gazit et al., 2024), can
allow the specification of fine-grained criteria, enable easier
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debugging, and alleviate the data burden because of the pri-
ors encoded within the reward specification language. At the
same time, verifiable rewards have been historically difficult
to scale to the full complexity of the open-world; however,
emerging research indicates that these specification strate-
gies may be compatible with the latent states inside of pre-
trained models (Kapoor et al., 2025), pointing to future work
where verifiable and learned rewards are complementary.

7. Call to Action
We analyzed today’s embodied reward models and found
they are systematically over-optimistic when compared to
human evaluators. We argue that reliable embodied reward
models require a deliberate shift beyond expert-only datasets
toward the intentional collection and release of dangerous,
failed, noisy, and error-prone robot data. Our calls to action
are as follows.

Action #1: Release curated, large-scale robot failure
datasets. We call on industry teams operating robot fleets,
academic labs running real-robot testbeds, and benchmark
organizers to establish consistent pipelines for releasing
negative robot behavior data. In particular, we advocate for
the creation of failure-focused datasets at a scale compara-
ble to today’s large expert demonstrations (O’Neill et al.,
2024; Khazatsky et al., 2024). At present, most public robot
datasets (and the benchmarks built on top of them) con-
tain almost exclusively successful behaviors, leaving reward
models with little to no exposure to failures, unsafe inter-
actions, or degraded execution (OpenGVL Team, 2025).
Similar challenges have existed in adjacent domains, such
as autonomous driving, where safety-critical failure data is
largely proprietary and only sparsely released (e.g., Nexar
crash dataset (Moura et al., 2025)). Our goal is not necessar-
ily to induce dangerous behavior (although this is plausible
in controlled lab or field tests), but rather to stop discarding
negative data that already arises during routine operation,
debugging, and deployment. Standardizing how failures
are captured, labeled, and shared (through common data
formats, failure taxonomies, and privacy-conscious release
practices) would transform these currently siloed datasets
into reusable calibration for embodied reward models.

Action #2: New methods for the synthetic generation
of “bad” robot data. We call for increased investment in
methods that enable the synthetic generation of failed and
unsafe robot behaviors. The community should prioritize
high-fidelity simulators (Makoviychuk et al., 2021; Todorov
et al., 2012; NVIDIA et al., 2025) that support physically
interactive, contact-rich, and deformable tasks, where real-
world failure data is hardest to collect. In parallel, real-to-
sim approaches (Jangir et al., 2025) should advance beyond
static or quasi-static reconstructions toward physically inter-
active real-to-sim models that allow counterfactual pertur-

bations of real trajectories, while maintaining high-fidelity
geometry and visual realism (e.g., Gaussian splats, NeRFs).
Advances in image and video editing foundation models
provide a complementary path for synthetic failure gener-
ation. For example, the ASIMOV dataset (Sermanet et al.,
2025) demonstrates how unsafe embodied images can be
synthesized from safe ones; however, current approaches are
largely limited to static imagery. To fully support robotics
applications, these methods must be extended to generate
temporally consistent, interactive failure trajectories. Here
we identify an exciting opportunity to extend current action-
conditioned (video) world models (Agarwal et al., 2025;
Hafner et al., 2025; Zhou et al., 2024; Guo et al., 2025;
Mei et al., 2026; Assran et al., 2025): to generate not only
successful outcomes but also imagine (diverse compositions
of) failed outcomes from small amounts of real failure data.

Action #3: More decentralized, physical evaluation sys-
tems. The RoboArena (Atreya et al., 2025) benchmark
utilized in this work is a first-of-its-kind multi-site evalua-
tion system with real human evaluations, running multiple
generalist policies, all deployed in diverse real-world en-
vironments. It also shows that decentralized evaluation is
feasible and substantially improves ecological validity and
coverage. At the same time, RoboArena makes the practical
scaling constraints concrete: matching the initial condi-
tions between trials, ensuring safety of any policy executed
on hardware, and performing resets imposes operational
friction that caps how quickly robot data and human feed-
back can be obtained. Scaling this paradigm is therefore
not just a matter of “adding more sites,” but of establish-
ing shared infrastructure—standardized rollout procedures
(initial-state matching, safety gating, and reset protocols),
logging formats, evaluation rubrics, and lightweight quality
control—so that results are comparable across sites without
incurring prohibitive per-run overhead.

Action #4: New benchmarks for evaluating general-
purpose embodied reward models. Finally, we call on
the community to invest in better ways to evaluate general-
purpose embodied reward models themselves. Existing eval-
uations remain limited in both scale and supervision quality.
Even in the most recent efforts (Lee et al., 2026), labels
are often sparse and are frequently derived from heuristics
or VLM-based surrogates rather than real human feedback.
We believe that, while such proxies can provide coarse as-
sessment of if a reward model is on the right track or not,
evaluation labels should be grounded in what matters to real
human stakeholders. If evaluation is not grounded in real
human stakeholder values, then models can appear accurate
under proxy scores while failing precisely in the cases that
matter for downstream optimization and deployment. We
therefore call for the development of reward model bench-
marks that provide dense reward labels on real robot data,
annotated by high-quality human evaluators.
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A. Embodied Reward Models
A.1. Prompt used for GVL

GVL (Ma et al., 2024) is a generative reward model that frames reward prediction as an embodied reasoning task. Concretely,
it uses a vision-language model (VLM) as a zero-shot reward predictor by first eliciting explicit evaluative reasoning over the
rollout (e.g., a frame- or segment-level analysis of observations o1:T conditioned on the task instruction), and then producing
a dense per-step reward sequence grounded in that reasoning. The original GVL implementation uses Gemini as the default
VLM backbone; in our experiments, we instead use GPT-5 due to stronger empirical performance. Unless otherwise noted,
all GVL scores are obtained from a single model query per trial with a temperature of 0.6. In the following, we show the
detailed prompt used in different experiments. The prompt supports three optional conditioning modules: (i) in-context
reference behaviors with known rewards, (ii) task-specific text-only failure descriptions, and (iii) visual failure references
(failure-example frames).

GVL Reward Prediction Prompt (template)

System: You are an expert roboticist and safety-aware evaluator.

User: Predict task reward for frames of a robot performing the task:

TASK = {TASK}

The task reward is between 0 and 100, where 100 corresponds to successful task completion. The evaluation should consider both
the robot’s behavior and the user’s preferences, including undesired or unsafe behavior. If the robot approaches undesired actions,
the reward should be low; if it clearly violates safety constraints, the reward can be 0. Frames are presented in random order;
evaluate each frame independently.

Input: Initial scene (anchor frame).
[ANCHOR IMAGE]
Constraint: the reward for the initial frame must be 0.

Optional module A: In-context reference behaviors (with known rewards).
Each reference behavior is a set of frames shown in random order:
• Reference behavior {d}, frame {j}, known reward: {r}. [DEMO IMAGE]

Optional module B: Task-specific failure descriptions (negative cues).
Use only if the current frame visibly matches; do not assume failures occurred. If a frame clearly matches a listed failure behavior,
lower the reward accordingly.
1. {failure desc 1}
2. {failure desc 2}
3. {failure desc 3}

Optional module C: Visual failure references (negative examples).
Use only as visual references; do not assume they occurred in the current rollout.
• Failure example {e}, frame {j}. [FAILURE EXAMPLE IMAGE]

Task: For the following rollout frames shown in random order, output a JSON array:

[
{"frame_number": i,
"frame_description": "...",
"task_reward": 0-100}

]

Guidelines:
• Describe only what is visible in the frame.

• Use negative cues only as evidence; do not hallucinate failures.

• Do not assume the current frames match the failure examples.

Frames:
Frame 1: [IMAGE 1]
Frame 2: [IMAGE 2]
· · ·
Frame N: [IMAGE N]
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A.2. Fine-tuned VLM rewards.

We use the open-sourced Dopamine reward model in our evaluations. Unless otherwise specified, we use the 8B checkpoint
in a zero-shot setting. Dopamine takes as input synchronized three-view video observations together with a goal image. For
each task, we construct the goal image from the final frame of a held-out successful rollout, and remove that rollout from the
evaluation set to avoid evaluating on the same trajectory used to define the goal.

A.3. Robot Behavior & Human Evaluation Dataset.

We use the real robot behaviors and human evaluations from RoboArena (Atreya et al., 2025), a decentralized evaluation
framework for generalist robot policies. Tasks are predominantly performed by robotic manipulators, but deployment
conditions and tasks are varied from simple picking tasks (e.g., “Pick up the red paper”) to more precise motions (e.g.,

“Pour the nuts from the red cup onto the plate”). We used 723 valid tasks in our evaluation; each task contains from 2 to 6
rollouts. Specifically, we study seven task categories of increasing complexity (visualized in Fig 1): Pick/Place objects on a
tabletop (427), Push/Pull interactions with rigid objects (32), Open/Close interactions with articulated objects (e.g., door)
(72), Stack Objects on top of each other (47), Reorient objects to new poses (68), Pour items from one container into
another (30), and Tool Use (e.g., picking up a whiteboard marker and erasing a whiteboard) (47).
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