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Abstract

Graphic design challenges are ubiquitous in scientific work: with every new paper
researchers must visualize complex data, create technical diagrams, and generate
visual aids for talks. Although generative models are revolutionizing the creation
of images, technical designs like those mentioned above are still something that
experts must create manually. Instead of hoping that scientific figures will emerge
from web-trained generative AI, this paper seeks to understand the fundamental
process behind scientific graphic design. Specifically, we formalize the graphic
design process as a multi-objective terminal-cost optimal control problem, trading
off information density and viewer effort of the final design. We also present
approximation techniques for solving the generally intractable optimal graphic
design problem, such as dimensionality reduction, a new algorithm called iterative
linearized graphic design (iLGD), and greedy strategies. With this formalism and
approximations in hand, we present several exciting frontiers related to preference-
based reward learning and generative model alignment with graphic designer
behavior.

1 Introduction

Modern scientific research increasingly relies on visuals to communicate complex technical results
to diverse audiences. While traditionally scientific discourse was restricted to conferences attended
by domain experts, the rise of “academic Twitter” has made scientific communication almost com-
monplace [8]. Quippy posts with high-quality visuals can catch the attention of Twitter influencers,
doubling or even tripling the citation counts of the shared papers and putting them on the feeds
of academics and the general public alike [14]. However, this intersection of graphic design and
scientific inquiry raises a novel set of scientific questions in their own right. What makes a scientific
figure “good”? Can we formally quantify how “good” a scientific figure is? And if so, how can one
automatically generate the optimal figure?

At first, we may be tempted to ignore these underlying scientific questions, and simply turn to
web-trained generative artificial intelligence (AI) for all our graphic design needs [4]. Despite their
prowess in creating images of cute cats or human handshakes [2] (Figure 1), generative AI falls short
when tasked with producing scientific designs. Even generating basic scatterplots of sine waves can
prove challenging for freely-accessible AI models such as DALL·E mini (see right, Figure 1). Instead
of waiting for academic figures to emerge from web-trained generative AI, this work seeks to model
the underlying process that guides thousands of graphic designers in their creation.

In this paper, we propose a dynamical systems model of the graphic design process. Dynamical
systems are a powerful mathematical framework which has shown impressive modeling results in
fields as disparate as scientific philosophy [7] to robotics [11], but has not yet been studied in the
graphic design context.

Our key idea is to model the graphic design process as a
discrete-time, multi-objective, terminal-cost optimal control problem.



Figure 1: DALL·E mini [4] results for three prompts: cat, handshake, and scatterplot of a sine
wave. It is no surprise that cat generations—likely trained on the nearly 6.5 billion cat images on the
internet—show highest fidelity. While realistic handshakes are still an open research problem for
generative AI [2], even simple scientific data such as a sine wave scatter plot are not realistic enough
to include in scientific papers.

Specifically, designers must trade off between the information density and viewer effort of the final
design, subject to the dynamical system constraints imposed by the design they are modifying. We
argue that his model yields three useful insights. First, this model reduces graphic design to a
known technical problem: optimal control. Scientists and engineers are typically more comfortable
with principles of optimization than with principles of graphic design; putting the design process into
the mathematical language of optimization can make this challenge less daunting for the scientific
community. Second, we can explicitly introspect on reward design [1], i.e., how we measure or
encode the desirable properties of a design within the optimization problem. Finally, after making
a connection to optimal control, we can leverage the past two decades of advanced numerical
optimization tools and algorithms to derive tractable approximations to the generally intractable
problem of optimal graphic design.

2 A Dynamical Systems Model of the Graphic Design Process

To model the fundamental process behind graphic design, we will formalize it through the lens of
dynamical systems theory. Dynamical systems theory has a long history of describing the behavior
of complex systems that evolve as a function of state, time, and control inputs, showing impact in
biology [15], robotics [11], cognitive science [6], scientific philosophy [7], and natural language [9].
However, to date, we are the first to apply a dynamical systems theory to graphic design.

State Space Model. Let the state of the design be denoted by x ∈ X . In our context, perhaps the
most general state space model is x ∈ Rn×m×3 wherein the design is represented as an n×m sized
image with three color channels; however, we will describe alternative state space representations
in Section 3. The designer’s actions can change the state of the design: for example, u ∈ U can
include changing the color of a single pixel value; or we can model control “primitives” such as
u = add mean of dataset or u = change mean line to blue. The overall evolution of the
design can be described as a discrete-time dynamical system:

xt+1 = f(xt, ut), (1)

which changes the state of the current design at time t to the next state of the design at time t + 1
based on the designer’s control input, ut.

Objective Function. We model the optimal graphic designer as utilizing an objective function to
measure quality of the design. Traditionally, a first order concern for engineers and scientists is
maximizing information density of the final design. Let Info: X → R be a map from the space of
designs to a scalar value of information density. However, in addition to maximizing information
density, we also must consider the perspective of the human viewers who will ultimately consume the
graphics. High information states are typically easy to identify and achieve, by simply maximizing
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Figure 3: Information vs. Viewer Effort Objectives. (left) Info(·) evaluated on three candidate
design states. High information states are typically easy to identify and achieve by simply maximizing
the amount of content. (right) ViewerEffort(·) evaluated on three candidate design states. This quantity
is harder to codify and can be evaluated differently by different audiences. The ranking showed above
evaluates a design (xE) with hard-to-read fonts, low-contrast data colors, and unnecessary line styles
as more effortful than one with high contrast and easy to read fonts (xB).

the amount of content present in the graphic (see left, Figure 3). Let ViewerEffort: X → R be a
function which measures how “effortful” a design is from the perspective of the human end-user.
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Figure 2: Different ways of visualizing
the same content can minimize viewer
effort while preserving the same infor-
mation density.

ViewerEffort(·) typically poses a challenge to scientists
and engineers. It can be a struggle to conceptualize this
objective function, since it requires a deep understanding
your audience (e.g., research collaborators vs. the general
public), the context in which the graphic will be consumed
(e.g., in a paper versus a poster versus a PowerPoint talk),
and subjective measures that are extremely hard to specify
mathematically (e.g., aesthetics). However, several heuris-
tics can be useful starting points when minimizing View-
erEffort: choosing contrasting colors, encoding meaning
through colors (e.g., green versus red for good versus bad
performance), reducing visual “clutter” (e.g., removing
extra outlines that do not add more information), using text
and icons strategically, choosing readable fonts, and fol-
lowing basic principles such as alignment and symmetry.
This intuition is visualized in the right of Figure 3.

Optimal Control Problem. The optimal designer must choose a sequence of design actions u0:T ∈
UT

0 under the following optimization problem:

max
u0:T∈UT

0

Info(xT+1)−ViewerEffort(xT+1)

s.t. xt+1 = f(xt, ut), t ∈ {0, . . . , T}
x0 = xinit.

(2)

Intuitively, this optimal control problem captures the tradeoff between maximizing information
content and minimizing viewer effort of the final design xT+1, all while abiding by the constraints
of the design dynamical system. The initial condition of the system, x0, can be the initial state of
the design: for example, a blank canvas or an existing design that one wants to improve. While this
reveals the underlying problem we wish to solve, it unfortunately is intractable to solve exactly due
to the high-dimensional nature of the design space x and the control space UT

0 , and the generally
non-convex optimization objective and dynamics function.

3 Tractable Approximations

Here, we present three practical approximations to the optimal graphic design problem in Equation 2.
These approximations include ideas from machine learning such as dimensionality reduction, algo-
rithms from optimal control like iterative linear quadratic regulation [10], and explore the surprising
effectiveness of greedy strategies.

Dimensionality Reduction. Our first approximation idea draws upon dimensionality reduction
techniques which are widely used in machine learning and signal processing. Let E : X → Z be
an encoder which maps from the space of high-dimensional design states to a lower-dimensional
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Figure 5: iLGD Algorithm. Algorithm and output of iterative linearized graphic design.

latent space Z . In graphic design, there are many encoders and latent spaces that may be of interest.
For example, consider the encoder in Figure 4 which encodes the image of a figure into just its
primitive shapes, removing all the text, color, and patterns. Importantly, choosing a sequence
of design actions in this lower dimensional space is significantly computationally easier, since
designers simply reason about the outcomes of actions on these primitives instead of each individual
pixel. This result is corroborated by recent work in image generation models [13], which use
powerful pre-trained image encoders to embed images and then perform diffusion in the latent space
instead of in the raw pixel space, reducing computational burden while preserving image fidelity.

Figure 4: (left) Figure taken from [5]. (right) En-
coder which reduces the dimension of the figure to
just primitive shapes.

Iterative Linearized Graphic Design (iLGD).
Creating polished figures from scratch is ex-
tremely time consuming and solving the design
problem in its full complexity can be daunting.
In optimal control, when faced with nonlinear
optimal control problems like the one in Equa-
tion 2, a successful technique is to iteratively
solve a simplified version of the optimization
problem. Specifically, we take inspiration from
the iterative Linear Quadratic Regulator (iLQR)
[10] which we briefly recap here. At iteration i, the original optimal control problem is convexified
by linearizing the dynamics (denoted by f̃A,B where A and B are matricies of the linearized system)
and quadraticizing the objective around a candidate state-control trajectory (x̃i, ũi). The optimal
policy πi for this simplified problem can be obtained in closed-form, but then this policy is simulated
forward (i.e., “rolled-out”) on the true nonlinear system f . This roll-out is used as the candidate
trajectory at the next iteration, i+ 1, and the process repeats until convergence.

Let us translate this algorithm to the graphic design domain, yielding our novel approximation
technique called iterative Linearized Graphic Design (iLGD) and summarized in Figure 5. The
true nonlinear system f we operate on as designers can be highly complex; for example, consider
using an advanced tool like Photoshop. Perhaps a candidate design trajectory is something totally
random, or maybe even nothing at all. This serves as (x̃0, ũ0) and is shown at the top of Figure 5. A
linearization of our nonlinear Photoshop dynamical system is often a much simpler system, like the
archaic but more intuitive medium of pencil and paper. Let f̃ be pencil and paper. We quadraticize
our Info and ViewerEffort objective functions yeilding, for instance, simpler objectives that ignore
the full complexity of how color influences ViewerEffort. For this simplified dynamical system and
optimization objective, we can sketch out (i.e., solve for the LQR policy πi) the best figure we can.
This policy is then rolled out in the real dynamical system (i.e., Photoshop system f ) which gives us a
new sense of how this design may look. We then repeat the process, refining the design in the simpler
pencil-and-paper dynamical system but then evaluating it in the Photoshop dynamical system.

Greedy Approximation. Our final approximation considers the surprising effectiveness of greedy
optimization with replanning. Instead of solving Equation 2 over the entire T -step time horizon, we
consider only a single-step optimization T = 1. Here, simple enumeration strategies across this one
step of decision-making can be quite effective. For instance, one can iterate through the major color



Figure 6: Numerical Results. Optimal design trajectory as a function of different objective functions.

options and compare how they look in the figure, choosing the one which greedily maximizes the
information and minimizes viewer effort. After seeing the outcome of this choice, we can replan for
yet another step following the same procedure until the time horizon T is reached. While extremely
simple, this approach can be surprisingly effective, as we demonstrate in a numerical example in the
following Section 4.

4 Simulation Results

With our optimal control problem formalized, we implemented a numerical solver to synthesize the
optimal graphic design that visualizes a simple set of numerical data. We implement the greedy
strategy approximation, and operate on the dynamical system model described below.

Dynamical System. We will operate on a lower-dimensional state space representation where each
state dimension is binary. Let ex ∈ {0, 1} turn the x-axis on or off, ey ∈ {0, 1} turn the y-axis on or
off. Assume we have two sets of data, A and B. For any dataset j ∈ {A,B} we can plot the dataset’s
mean, change its color, change its linestyle and turn on or off the standard deviation; let these be
denoted by ej ∈ {0, 1}, cj ∈ {orange, grey}, pj ∈ {−,−−}, sj ∈ {0, 1} respectively. Finally, let
egrid ∈ {0, 1} turn the grid lines on or off. The complete state vector is the stacked individual
components:

x = [ex, ey, eA, cA, pA, sA, eB , cB , pB , sB , egrid]. (3)

The control space is u ∈ {0, 1}11, or the set of all 11-dimensional binary vectors which “flip” various
combination of state components. Finally, the dynamics are:

f(x, u) := (x+ u) mod 2 (4)

Reward Design. Taking inspiration from classic design principles, we encode our design objective
function as:

Info(x) = ||x||2 (5)

ViewerEffort(x) =



+10, if ei = 0, i ∈ {x, y,A,B, grid} (less content, less effort)
−10, if ei = 1, (more content, more effort)
−||cA − cB ||2 (different colors, less effort)
||pA − pB ||2 (similar pattern, less effort)
||sA − sB ||2 (similar standard deviation, less effort)

(6)

Note that other measures of information density could be explored for the Info(·) objective, such as
information theoretic notions of entropy.

Results: Optimal Design Trajectory. Using the greedy strategy from Section 3 and Python 3.7, we
implement our optimal_designer.ipynb and obtain both the final optimized design xT+1 as well



as the design trajectory x0:T+1. Our results are visualized at the top of Figure 6. Interestingly, the
algorithm follows a similar “design trajectory” to what we may implement as human designers: first
it lays down the key components of the figure such as the axes and data points, and then changes the
colors of the data lines to be contrasting.

Results: Sensitivity to Objective Function Design. We also perform a sensitivity analysis to the
optimal design as a function of the optimization objectives. In the center and bottom of Figure 6
we show two design trajectories under this sensitivity analysis. First, when optimizing only for
information density, we see a predictable outcome: the algorithm places all possible data (mean
and standard deviation) as well as all possible colors and line styles. However, when we prioritize
information density more than viewer effort (but with still a small penalty on viewer effort), the
algorithm relaxes, adding only one of the standard deviation plots and keeping the line style and color
pattern the same between the two datasets. This sensitivity analysis showcases how important good
objective design is for obtaining the intended designs.

5 Future Work

While this work formalized the fundamental problem of graphic design through the lens of dynamical
systems and optimal control, there are several key limitations and opportunities for future work.
First, the objective functions we considered in this work are limited in their capacity to capture
all design considerations, such as accessibility (e.g., prioritizing colorblind friendly colors), the
medium in which graphic is presented (e.g., print versus web), and presentation context (e.g., K-12
education versus domain experts). An exciting direction for future work is learning the design
objective functions from human feedback. For example, different design generations could be shown
to human end-users for comparison, and the objective function can be learned via the widely-popular
preference-based learning paradigm [3]. Finally, collecting the temporal state-action data of real
human designers (e.g., YouTube videos of designers making figures in Photoshop, or software which
tracks the mouse clicks of designers within a particular software) is an exciting opportunity for
learning approximate design policies. If the datasets of designers include their action sequences (e.g.,
mouse clicks) then we could use supervised learning techniques such as behavior cloning [12] to
learn the optimal design policy which is aligned with real human behavior.
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