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Abstract—Assistive robotic arms often have more degrees-of-
freedom than a human teleoperator can control with a low-
dimensional input, like a joystick. To overcome this challenge,
existing approaches use data-driven methods to learn a mapping
from low-dimensional human inputs to high-dimensional robot
actions. However, determining if such a black-box mapping can
confidently infer a user’s intended high-dimensional action from
low-dimensional inputs remains an open problem. Our key idea
is to adapt the assistive map at training time to additionally
estimate high-dimensional action quantiles, and then calibrate
these quantiles via rigorous uncertainty quantification methods.
Specifically, we leverage adaptive conformal prediction which
adjusts the intervals over time, reducing the uncertainty bounds
when the mapping is performant and increasing the bounds when
the mapping consistently mis-predicts. Furthermore, we propose
an uncertainty-interval-based mechanism for detecting high-
uncertainty user inputs and robot states. We evaluate the efficacy
of our proposed approach in a 2D assistive navigation task and
two 7DOF Kinova Jaco tasks involving assistive cup grasping
and goal reaching. Our findings demonstrate that conformalized
assistive teleoperation manages to detect (but not differentiate
between) high uncertainty induced by diverse preferences and
induced by low-precision trajectories in the mapping’s training
dataset. On the whole, we see this work as a key step towards
enabling robots to quantify their own uncertainty and proactively
seek intervention when needed.

I. INTRODUCTION

Robotic arms designed for assistance typically possess more
degrees of freedom (DoF) than can easily be controlled by a
human using low-dimensional inputs such as a joystick [53] or
a sip-and-puff device [3, 23]. In practice, teleoperating a high-
DoF robot can require frequent mode switches that control
individual components of the arm during even very basic
everyday tasks [15, 48, 52]. For this reason, a core challenge
in assistive teleoperation is building mappings that translate
low-dimensional human inputs into the human’s desired high-
dimensional robot actions in an intuitive way [39].

Recently, these low-to-high dimensional mappings have
been increasingly learned from human data, wherein annota-
tors provide state, high-DoF action, and sometimes low-DoF
input pairs for training [39, 36, 29].

However, quantifying the trustworthiness of these black-
box assistive teleoperation systems is an open problem. We
find that off-the-shelf, these learned mappings can be highly
sensitive to multimodality and suboptimal data in the training
distribution. Furthermore, when faced with out-of-distribution
human inputs at deployment time, the robot can overconfi-
dently map the human’s low-DoF input to an extremely incor-
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Fig. 1: Conformalized Teleoperation. We leverage conformal
methods to quantify if the robot’s learned controller can
reliably lift the human’s low-DoF input (joystick) to their
desired high-DoF action (7 joint velocities). For any joystick
input at the current state, the robot can assess its uncertainty
in remapping that input (dot size in the expanded view is pro-
portional to uncertainty at that coordinate). Arrows emphasize
directional joystick input. (left, top) If the human pushes up
or to the left on the joystick, the robot has low uncertainty,
because it knows with high probability the person wants to
go forward towards the object. (left, bottom) If the human
pushes backwards on the joystick, the robot predicts a large
pivot backwards, but is rightfully uncertain this is what the
human intended.

rect high-DoF robot action. At best, this can cause frustration
from the end-user; at worst, it can be a safety hazard.

In this work, we seek to rigorously quantify if a learned
assistive controller can confidently infer a user’s intended
high-dimensional action from only low-dimensional states and
inputs. Our key idea is:

by training the robot’s controller to estimate high-
DoF action quantiles, we can calibrate the uncer-
tainty via adaptive conformal prediction techniques.

Specifically, we leverage the statistical technique of adaptive
conformalized quantile regression [17], which is relevant for
regression problems and provides asymptotic coverage guaran-
tees (i.e., human’s true high-DoF action is included within the
uncertainty interval) without strong distributional assumptions.
Furthermore, the adaptive nature of this paradigm enables the
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calibration procedure to grow and shrink uncertainty intervals
over time as the end-user’s input is poorly or well-predicted by
the robot’s learned controller. As such, we call our approach
Conformalized Teleoperation. With this rigorous quantification
of the robot’s uncertainty, we also propose a simple method to
detect high-uncertainty states which can be used to alert the
end-user or safely stop operation.

We evaluate how well our approach calibrates in a 2D
assistive navigation task, and two 7DOF Kinova Jaco tasks
involving assistive cup grasping and goal reaching. Our ex-
periments indicate that naturally-occurring diversity in the
training dataset, such as multiple preferences for how a
task should be completed or low-precision behaviors, can
significantly impact the robot’s learned assistive control con-
fidence. Beyond this, we find that our approach is capable
of detecting critical high-uncertainty states and inputs for
both in- and out-of-distribution end user behavior. Overall,
we see this work as an important first step towards robots
that rigorously quantify their own uncertainty in the assistive
teleoperation domain. Project website is available at https:
//conformalized-assistive-teleoperation.github.io/.

II. RELATED WORK

Assistive Teleoperation. Assistive robots enable users with
physical impairments to perform a variety of everyday tasks
[8, 43]. Teleoperating a high-DoF robot can be difficult and
often requires frequent mode switches to accomplish simple
tasks [15, 48, 52]. One of the key challenges is the low-
to-high-dimensional mapping induced by low-DoF controllers
like joysticks [53], sip-and-puff devices [3, 23], or eye gaze
[2]. Prior works on dimensionality reduction have shown
increasingly sophisticated methods for designing or learning
a mapping from the user’s input to the robot’s high-DOF
control action [39, 24, 40, 19]. Alternatively, the shared control
paradigm combines low-DoF human input with autonomous
robot policies in order to make teleoperation of the robot
more fluent [7, 6]. Other works considers the inverse approach
of developing high-dimensional interfaces to control high-
DoF robots [35]. In this work, we draw upon the data-
driven approaches [39, 40] but focus on getting statistical
performance assurances on the output of the model [1, 17]
when the assistive mapping is a neural network.

Uncertainty-Aware Shared Control. In shared control
paradigms, robots must distinguish intents of the human
operator [7]. Uncertainty-aware shared control paradigms can
elect to prioritize human control, handing off control to the
human operator, while constraining robot inputs to maintain
safety [6], or suggesting a control mode in which human
input maximally disambiguates their intent [19]. Prior works
maintain an estimate of intent confidence for low-dimensional
hand-designed intent spaces [60, 14] or, for data-driven estima-
tors, when relying on data-driven based methods like learned
encoder-decoder architectures, use reconstruction error as a
signal of intent inference quality [26]. When intent inference
is detected to be poor, control is handed over to the human. In

the latter category, methods assume known human intent but
focus on preventing collisions during robot assistance planning
[55, 58]. In a similar vein as our work, adaptive shared control
approaches predict human actions online and adjust robot
guidance as a result of uncertainty in the robot’s inferences
[20]. However, we translate ideas from conformal prediction
to get rigorous uncertainty bounds for learned robot assistive
controllers.

Uncertainty Quantification seeks to estimate the confidence
a model has in its predictions. Bayesian approaches such
as Bayes filters [10, 11] and Bayesian neural networks
[18, 34, 32] quantify uncertainty via posterior updates. In
deep learning other popular uncertainty quantification methods
include Monte Carlo dropout [16, 59, 49] and deep ensemble
approaches [42, 33, 25]. Other ensemble model disagreements
can also be used such as random forests [5] and bagging
[4]. We ground our approach in conformal prediction [1],
specifically adaptive conformal inference [17], an increasingly
popular method which provides coverage guarantees without
assumptions on the data distribution nor model assumptions.

Conformal Prediction for Robotics. Conformal prediction is
a paradigm for constructing rigorous prediction intervals for
both classification and regression problems [1, 46, 47, 56]. The
method has been explored in a variety of robotics contexts for
providing collision-avoidance assurances [9, 38, 13, 44, 51, 12,
37], calibrating early warning systems [41] and large language
models [45]. We take inspiration from these recent successes
of conformal prediction techniques applied to robotics, and
propose how to incorporate these advances into the assistive
teleoperation domain.

III. PROBLEM FORMULATION

In this work, we seek to rigorously quantify how confidently
a learned assistive controller can infer a user’s intended high-
dimensional action from low-dimensional inputs and states.
Here, we formalize the key components of our problem setup.

Robot States & Actions. We model the state as s ∈ S ⊆
Rns , consisting of the robot’s joint angles and relevant object
poses in the scene, and the robot’s high-dimensional action as
a ∈ A ⊆ Rna (e.g., joint velocities). The robot’s state evolves
via the discrete-time dynamics st+1 = f(st, at).

Human Teleoperation. We model the human teleoperator
as desiring to execute a specific high-DoF action on the
robot: let aH ∈ A be the human’s desired high-dimensional
action. However, the human teleoperates the robot via a low-
dimensional interface, uH ∈ H ⊆ Rnu . For example, if
nu = 2 then this could be a 2-dimensional joystick that the
human uses to control a robot’s 7 joint velocities, na = 7.

Learned Low-to-High-Dimensional Controller. To enable
easier teleoperation, we study learned assistive controllers [36,
39, 27, 29] which predict a human’s desired high-dimensional
action from the current state and low-dimensional input. Let
this controller be:

âtH = fθ(u
t
H, st) (1)

https://conformalized-assistive-teleoperation.github.io/
https://conformalized-assistive-teleoperation.github.io/
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Fig. 2: Approach for Conformalized Teleoperation (left) During training, we modify the teleoperation controller fθ to regress
both the high-dimensional action corresponding with the low-dimensional human input, but also the empirical quantiles. (right)
When deployed around a new user, we can calibrate the model to the user’s new dataset distribution. Adaptive Conformal
Quantile Regression enables us to enlarge or shrink the predicted quantiles to get coverage of the user’s desired high-dimensional
action.

In our setting of interest, this controller fθ is represented
as a neural network with parameters θ and is learned from
a dataset (st, ut

H, st+1) ∈ Dtrain where st is the current
state and st+1 is the intended next state, and ut

H is the
corresponding low-dimensional input the human would give
to yield the desired next state.

In practice, to generate a sufficiently large and diverse
training dataset, a variety of strategies can be employed: for
example, using heuristics to deterministically generate ut

H for
consecutive state pairs [36], showing human annotators current
and next-state robot pairs (e.g., robot is near an object, then
the robot is closer to the object) and asking them to label
them with the corresponding low-dimensional action (e.g.,
uH = left on the joystick) [36], or querying large-language
models as a proxy for human labels [57].

After training fθ, the robot is deployed to interact with a
target user, and executes the predicted high-dimensional action
âtH output by the learned controller conditioned on the current
state st and the human’s low-dimensional action ut

H.
Goal: Calibrated Low-to-High Dimensional Control. Our
goal is to calibrate the controller fθ trained on Dtrain to a
target end-user. Intuitively, we want a principled measure of
the learned controller’s uncertainty at different states and low-
dimensional end-user inputs. More formally, we seek to ensure
that the human’s intended high-DoF action, aH, is contained
within the predicted action bound on fθ’s output with designer-
specified probability 1− α.

IV. METHOD: CONFORMALIZED TELEOPERATION

Our approach to quantifying the confidence of a black-box,
learned assistive controller on target user data is grounded in
adaptive conformal prediction [17]. While there are many vari-
ants of conformal prediction (CP) (see [1] for an overview),
we focus on Adaptive Conformalized Quantile Regression
(ACQR) [46] which frames the problem of constructing
high-confidence prediction intervals on temporally-correlated

data as an online learning problem, is relevant to regression
problems, and yields asymptotic coverage guarantees without
strong distributional assumptions [17, 46]. Additional back-
ground on relevant conformal prediction concepts can be found
in the Appendix, Section VIII-A.

In this section, we break down our Conformalized Tele-
operation approach into three key steps. First, we train the
robot’s initial assistive mapping with paired low-DoF in-
puts and high-dimensional-DoF outputs, but force the model
to approximate its own uncertainty by predicting empirical
quantiles (Section IV-A). Next, we use ACQR to calibrate
this base model to data from a target user. Given some
miscoverage rate α ∈ [0, 1], our goal in conformal prediction
to construct prediction intervals such that the probability the
interval contains the correct label (i.e., action) is almost exactly
1− α. A target user’s calibration data—drawn from the same
distribution that the model will be deployed with at test
time (from the target user) but unseen during training—is
what enables the calibration procedure to produce prediction
intervals guaranteed to contain the user’s desired high-DoF
action with a specified high probability (Section IV-B). Finally,
we use the size of the calibrated prediction intervals as a
calibrated monitor indicating the model’s uncertainty on a
target user (Section IV-C).

A. Training Teleoperation Controller as a Quantile Regressor

We start by training the robot’s assistive teleoperation con-
troller via a neural network, and force the model to predict its
own uncertainty by predicting the empirical quantiles of the
predicted high-DoF action.
Training Data. Let Dtrain be a dataset consisting of tuples
(st, ut

H, st+1), where st is the current state, st+1 is the
intended next state, and ut

H a low-dimensional input expected
to move the robot from st to st+1. Note that in our primary
problem setting, the states are the 7DOF joint angles of the
robot (s := q) and actions are joint velocities (a := q̇), so we



can simply subtract st from st+1 to determine the action atH
intended by ut

H.
Architecture. The assistive controller fθ is a neural network
parameterized by θ that takes as as input (st, ut

H) pairs and
estimates atH. The network architecture is a simple feed-
forward neural network with GELU activation [21], and an
information bottleneck layer of dimension 6. The information
bottleneck layer is followed by a tanh activation (see Figure
2).

To construct a controller suitable for conformal inference,
we train fθ to additionally estimate quantiles q̂αlo

= α
2 and

q̂αhi
= 1− α

2 of the predicted action âH given (s, uH), using
quantile regression [31]. More formally, the α-th conditional
quantile function is

qα := inf{a ∈ Rm : P (Y ≥ a | X = (s, uH)) ≥ α} (2)

The uncertainty in the prediction of the human’s intended high-
dimensional action is reflected in the size of the interval.
Loss Function. We train fθ to minimize:

L = LMSE + Lp(αhi) + Lp(αlo), (3)

where LMSE measures error between the controller’s pre-
dicted high-DoF action, âH, and the desired high-DoF action,
aH.

The losses, Lp(αhi) and Lp(αlo), are two pinball losses
(where p(·) stands for pinball) that are standard within con-
formal literature (as defined in [31, 46, 50]). Thus, in addition
to the mean prediction, the model also outputs the empirical
upper 1− α

2 and lower α
2 -quantile:

Ĉ(st, ut
H) = [q̂αlo

(st, ut
H), q̂αhi

(st, ut
H)]. (4)

For training, we use a learning rate of 0.01.

B. Adaptive Conformalized Quantile Regression (ACQR)

Although the base model in Section IV-A is trained to
estimate its own uncertainty, the estimated uncertainty interval
Ĉ(st, ut

H) is not necessarily calibrated. Here, we use a cali-
bration dataset consisting of a target user’s desired low-DoF
and high-DoF mappings and conformal prediction to correct
Ĉ to ensure our desired coverage.
Measuring Misprediction. The critical step in ACQR [17] is
to, for any input (st, ut

H), compute the conformity score that
quantifies the error made by the initial prediction interval. One
design choice when applying adaptive conformal prediction
to our robotics domain is how to scale uncertainty across the
high-dimensional output vector. In general, each dimension
of the high-dimensional output may not have the same scale;
to account for this, we select a multiplicative (rather than
additive) factor as the nonconformity score. Specifically, we
look for the smallest multiplicative factor ρ ∈ R for which we
get coverage across all dimensions of the output vector.

Mathematically, for each datapoint (st, ut
H, atH), we com-

pute the similar upper and lower prediction error:

∆+
t = max{q̂αhi

− âH, ϵ}, ∆−
t = max{âH− q̂αlo

, ϵ}, (5)

for a small ϵ = 0.001. With this, we calculate the nonconfor-
mity score as the minimum multiplicative factor for which we
get coverage in all dimensions of the output [1]:

S(st, ui
H, aiH) = inf{ρ : atH ∈ (âtH− ρ∆−

t , ât + ρ∆+
t )}. (6)

Calibrating Uncertainty to Target User. At test time, we
receive sequential data, referred to as Dcalib, from a target
end-user. We want to quantify how uncertain is our learned
controller when mapping inputs from this target user. Let
Dcalib = {(st, ut

H, atH)}Tt=0 contain low-dimensional inputs
labeled by our target user.

To perform adaptive conformal quantile regression (ACQR),
we initialize our desired miscoverage rate α1 = α and
then seek to compute the empirical quantiles that conformal-
ize the prediction interval. Define time-dependent set St =
{S(si, ui

H, aiH)}ti=1 as the set of conformal scores for all
datapoints in Dcalib up until the current time t, where the
score function S itself is not time-dependent.

Given a new input Xt, ACQR constructs a prediction
interval for Yt by leveraging the conformity scores obtained
via Equation (6) on the calibration dataset. Finally, for any
new human inputs (st, ut

H), the calibrated prediction interval
is obtained via

C(st, ut
H) = [âtH −Q1−αt

(St)∆
−
t , â

t
H +Q1−αt

(St)∆
+
t )].

(7)
where λt = Q1−αt

(St) := (1−αt)(1+1/|Dcalib|)th empirical
quantile of set St.

To regulate the level of conservativism, at each timestep,
we also adjust αt via the online update

αt+1 := αt + γ(α− errt) (8)

where errt is defined

errt :=

{
1, if Yt /∈ Ct(Xt).

0, otherwise.
(9)

In practice, we take γ = 0.005, a value found by [17] to give
relatively stable trajectories while being large enough to make
meaningful changes to αt.

Coverage Guarantee. Our final guarantees are inherited from
ACQR, which ensures asymptotic α coverage [17].

Mathematically,∣∣∣∣∣ 1T
T∑

t=1

errt − α

∣∣∣∣∣ ≤ max{α1, 1− α1}+ γ

Tγ
(10)

At limT→∞, limT→∞
1
T

∑T
t=1 errt approaches α. This guar-

antees ACQR gives the 1 − α long-term empirical coverage
frequency regardless of the underlying data generation process.
While these asymptotic coverage guarantees are sound in
theory, we believe it is important to acknowledge that typical
robot deployment conditions are finite-horizon. Nevertheless
our empirical findings in Section V indicate the practical utility
of using ACQR to calibrate black-box assistive controllers
compared to naively running the base model.



C. Monitoring Uncertainty

With our conformalized teleoperation approach, the robot
can be confident that any user’s low-DoF input to fθ can
be associated with an interval of high-DoF actions that is
guaranteed to include the human’s desired high-DoF action
(under the assurances provided by ACQR). Note that if we
had left the regressed quantiles as they are output by fθ then
we have no rigorous notion of uncertainty with respect to the
specific end-user. In fact, as we see in our experiments in
Section VI, QR is often overly confident even when it lifts the
user’s inputs into erroneous high-DoF action spaces.

With this calibrated notion of uncertainty, we further pro-
pose a simple mechanism for detecting high uncertainty in the
user inputs seen at test time. Recall that our ACQR method
yields a high-dimensional (7-DoF) calibrated upper and lower
interval bound denoted by C(·) in Equation 7. We distill the
high-dimensional uncertainty into a single scalar measure by
considering the radius of the sphere formed by the L2 distance
between the upper and lower interval bounds. Mathematically,
our scalar uncertainty score is:

U(st, ut
H) := ||(ât

H +Q1−αt(s
t)∆+

t ))− (ât
H −Q1−αt(s

t)∆−
t )||2.

(11)
By choosing a threshold β of high uncertainty scores, we have
a simple switching mechanism which flags high uncertainty at
inputs where U(st, ut

H) > β, and low-uncertainty elsewhere.
This can be used to stop robot operation, ask for more
clarification on the human’s intents, or collect more data to
improve the model. While in this work we do not study exactly
how this detection mechanism could be used, we do investigate
if it can, with statistical significance, distinguish between low
and high-prediction error states in Section VI.

V. EVALUATION SETUP

To evaluate the efficacy of our proposed approach, we run a
series of quantitative and qualitative experiments to study how
different training data distributions Dtrain and user’s inputs
(Dcalib) impact the learned mapping’s uncertainty.

Types of Uncertainty.
In the context of assistive teleoperation, we study three

sources of real-world uncertainty present in teleoperation
data: latent preferences (at the trajectory level), low control
precision (at the trajectory level), and low-dimensional input
schemes (at the input level).

Trajectory level: Latent preferences. First, we consider
the scenario where the training distribution Dtrain contains
demonstrations from a population of users with varied latent
preferences about the task. We assume all users have the
same low-dimensional input scheme (e.g., they all agree on
which low-DoF input corresponds to which high-DoF action),
but the learning problem is under-specified: a single low-DoF
input could correspond to multiple different desired high-DoF
actions under two different latent preferences. Here, the latent
preferences we consider are which object (i.e., goal) the user
wants to move the robot to, and which grasp pose the user
wants to pick up a coffee mug with.

Trajectory level: Low control precision. Second, we study
scenarios where the training demonstrations exhibit periods
of low control precision or inconsistent task execution. We
assume there is a single goal but the users exhibit noisy
behavior on the way towards a goal (such as grasping a cup),
in the training dataset. Both training and calibration users
use the same low-dimensional input labeling scheme, and the
calibration users also exhibit low-precision task execution.
Input level: Low-dimensional input schemes. Third, we
consider uncertainty that stems from diverse low-dimensional
input schemes, i.e., the different ways that humans choose
low-DoF inputs for the same high-DoF robot trajectory. Here,
uncertainty arises because of natural differences between the
low-dimensional input schemes seen at training time and
the deployment-time users’ intuitive understanding of low-
dimensional inputs. We obtain calibration data in this scenario
by showing the same robot trajectory to three human users,
and collecting their low-dimensional input sequence labels.
Environments. We study uncertainty in the latent preferences
and low control precision contexts through experiments in
three controlled environments: in a toy assistive navigation
GridWorld environment for building intuition, and a Kinova
robotic manipulator 7DOF goal-reaching and 7DOF cup
grasping setting. The Gridworld environment is a 25x25
gridworld in which the robot must navigate to achieve a goal
state. In the 7DOF settings, expert demonstrators are tasked
with either kinesthetically moving the robot towards one of
the two objects on the table, or moving the robot to grasp
a mug from either the lip or the handle. The uncertainty
context informs the construction of the training dataset for
each domain. We study uncertainty in the low-dimensional
input schemes context through an experiment in the 7DOF
goal-reaching setting. To evaluate our method on diverse
user input schemes at calibration time, we collected low-
dimensional input sequences from a mixture of simulated users
and novice human operators (more details in Section V).
Baselines. We compare our method ACQR to vanilla Quantile
Regression (QR), where we train our teleoperation controller
but do not calibrate the intervals on the target user online. We
additionally compare our method to an ensemble uncertainty
quantification approach Ensemble [33]. For the Ensemble
baseline, we train M = 5 neural networks with the same
encoder-decoder structure as in our teleoperation controller de-
sign. Each model outputs a predicted mean µθ(uH, s) ∈ Rna

and variance σ2
θ(uH, s) ∈ Rna for the prediction of the high-

DoF robot action a intended by the user input uH at state s.
We randomly initialize the model weights and data order. We
take the mixture of the multivariate Gaussians as the model
prediction, and the first standard deviation from the mean as
the prediction interval Ct(uH, s).
Conformal Hyperparameters. Our implementation of ACQR
uses a step size γ = 0.005 [17], target mis-coverage level of
α = 0.1, and an initial α1 = 0.1. Additionally, our proposed
detection mechanism (Section IV-C) uses a threshold β. In
the latent preferences setup, βgrid = 1.5, βgoal = 0.05, and



βcup = 0.15. In the control precision context, βgrid = 1.0,
βgoal = 0.05, and βcup = 0.12.

Metrics. We focus on measures of coverage and prediction
interval length. Coverage is defined as

Cov :=
1

|Dcalib|
∑

(ut
H,st,at

H)∈Dcalib

1[atH∈Ct(u
t
H, st)]. (12)

We also seek to evaluate the size of the prediction interval, as
there exists a tradeoff between coverage and interval sizes. An
ideal model has tight intervals but good coverage. For ACQR
and QR, interval length for each datapoint is defined as the
distance between the upper bound C+

t and lower bound C−
t

of the standard deviation of the prediction interval, averaged
across each dimension d ∈ na:

IL(uH, s) :=
1

na

na∑
d=1

C+
t (ut

H, st)d − C−
t (ut

H, st)d. (13)

We average final metrics over all datapoints in Dcalib.

VI. EVALUATION RESULTS

We break down our results into five major takeaways,
focusing on in-distribution (ID) and out-of-distribution (OOD)
calibration users, comparison of our various uncertainty quan-
tification methods, and the performance of our proposed
detection mechanism.

Takeaway 1: Even when users operate with an in-distribution
input scheme on in-distribution high-DoF trajectories, an
uncalibrated mapping fθ (QR) miscovers the human’s desired
high-DoF action more than ACQR.

We highlight this takeaway in the setting of 7DOF Cup-
grasping with diverse latent preferences, but further results
can be found in the supplementary. Recall that in this setting
the demonstrators may pick up a cup from the handle, others
from the lip. Thus, Dtrain consists of 14 expert demonstration
trajectories, where half pick up the cup from the handle, and
half pick up the cup from the lip (shown in left of Figure 3).
We calibrate fθ on an unseen user, referred to as Alice and
denoted DA

calib, who gives 3 demonstrations of picking up the
cup from the lip. In this case, the calibration demonstrations of
target user, Alice, were provided by one of the researchers who
also provided expert demonstrations in the training data. Both
the demonstrators and target user employ a heuristic strategy
to deterministically annotate ut

H for consecutive state pairs,
where ut

H is the change in x-direction and y-direction of the
end effector from st to st+1. We calibrate to each held-out
trajectory, simulating the inputs to the assistive teleoperation
controller over time as though the user was controlling the
robot in real time.

Using ACQR, we see that uncertainty is highest at the
start and end of the interaction when the human has to give
the final inputs to orient the robot arm to face downward
to achieve their desired cup grasp (shown in right, Figure
3). Intuitively, Dtrain contains higher disagreement amongst

Grasp at 

cup 

handle

Grasp at 

cup lip αt

Time t

0.2

2.5λt

High 

uncertainty 


at grasp 

Fig. 3: 7DOF cup-grasping with latent preferences. (left)
Dtrain exhibits multimodality in grasp. (right) When ACQR
calibrates to DA

calib. Orange dots indicate timesteps with high
uncertainty (U > βcup). λt represents the multiplicative
factor by which the quantile intervals are expanded. While
αt increases initially, it decreases later as the robot orients
itself towards the cup and as it approaches the cup, and
uncertainty in the desired high-dimensional action increases.
Correspondingly, λt increases at the points of uncertainty. The
orange highlights denote timesteps where the uncertainty is
greater than threshold βcup and aligns temporally with the
orange points on the trajectory. For grasps on the lip, there
is higher uncertainty at the start of the trajectory and at the
grasp location, due to the variance in lip grasp demonstrations
in the training dataset.

the training data generators as they position the robot for
grasping. These critical states [22] are informed by the specific
user’s preferences. Without additional context and due to the
underspecified input, the robot cannot be certain about the
correct way to map the user’s low-DoF input to a high-DoF
action. Quantitatively, QR achieves 52.7% coverage on DA

calib,
while ACQR achieves 92.6% coverage (where target coverage
is 90%). This result demonstrates that even for an end-user
providing in-distribution demonstrations, adaptively calibrat-
ing to unseen data is necessary for achieving informative
uncertainty bounds.

Takeaway 2: When users provide in-distribution low-
dimensional inputs on out-of-distribution calibration trajecto-
ries, ACQR can expand uncertainty when necessary but also
contract it for inputs that align with its training distribution.

We highlight this takeaway in the setting of 7DOF Goal-
reaching with diverse latent preferences. Here, Dtrain con-
sists of 120 expert demonstrated trajectories, where half of
the demonstrators prefer the blue goal and half prefer the
red goal (see left, Figure 4). As in the cup-grasping domain,
demonstrators and target users employ a heuristic strategy
to deterministically generate ut

H for consecutive state pairs,
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Fig. 4: 7DOF goal-reaching with latent preferences. (left)
Dtrain contains teleoperation trajectories towards red and blue
goals. (center) Alice’s demonstration contains high uncertainty
only at the beginning of the task. (right) Bob’s indirect path
flags high uncertainty throughout. ACQR maintains lower λt

and higher αt throughout DA
calib demonstration than through-

out DB
calib.

using the change in x-direction and y-direction of the end
effector. We calibrate on two target user profiles, Alice and
Bob. Alice represents an in-distribution user: she demonstrates
6 near-expert trajectories to each of the two goals, taking direct
paths to the objects. Her data is denoted DA

calib. The second
user, Bob, takes 6 extremely indirect paths towards each goal,
representing our out-of-distribution user; his data is denoted
DB

calib. In this case, calibration data for Alice and Bob was
provided by a researcher who teleoperated in accordance with
the particular user profile.

In the center and right of Figure 4, we see qualitatively
that ACQR run on demonstrations in DA

calib contain fewer
instances of high uncertainty, only flagging the start states
as uncertain since the assistive mapping isn’t confident in
which initial high-DOF actions the human wants to take.
However, input data from DB

calib are frequently flagged as high
uncertainty. Interestingly, there are several key portions of the
trajectory wherein even the out-of-distribution user appear to
be well-predicted by the model.

Quantitatively on DA
calib, QR achieves only 82.1% cover-

age on DA
calib while ACQR achieves 91.9% coverage. More

surpisingly, on the out-of-distribution user from DB
calib, QR

is overly confident, achieving only 68.8% coverage. Instead,
ACQR achieves 90.2% coverage. This result demonstrates that
fθ can confidently mispredict the intended actions of an out-of-
distribution user, but ACQR can adjust the prediction intervals
to handle such interaction data.

Takeaway 3: As users’ low-dimensional input schemes become
more out-of-distribution, ACQR adapts to cover their desired
high-DoF actions more than QR.

We highlight this takeaway in the task of 7DOF Goal-
reaching. We use the base model trained from the latent
preferences context. Training demonstrations are labeled with
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Fig. 5: 7DOF goal-reaching (blue) with out-of-distribution
low-dimensional input schemes. (Left) The calibration data
is collected by querying a mixture of simulated and human
users for their desired low-dimensional input for a given
high-DOF robot action. (Middle) Our uncertainty monitoring
mechanism, at the threshold βgoal,human = 0.2, flags high
uncertainty for out-of-distribution input schemes H1 − H4.
(Right) Calibration using ACQR increases coverage over QR
on the calibration data from all in- and out-of-distribution
users, increasing coverage towards, but not yet at, the desired
level of 90%.

low-dimensional inputs via a deterministic, heuristic strategy
using the change in x-direction and y-direction of the end
effector.

In the calibration phase, target users provide low-
dimensional input labels for a single calibration trajectory to
the blue goal (see Section VIII-F for results on a trajectory
to the red goal). For each trajectory, we collected the low-
dimensional input labels for pairs of consecutive robot states,
downsampled along the full trajectories. We considered five
input schemes: three real human annotators (H2, H3, H4), one
simulated user operating under an alternative heuristic scheme
(H1), and one in-distribution simulated user (H∗).

Specifically, H1 gives input uH equal to the change in
z-direction and y-direction of the end effector, representing
a slightly out-of-distribution low-dimensional input scheme.
Users H2, H3, H4 are three real, human users with technical
expertise but novice to the task of robot teleoperation with
low-dimensional control (see left hand side of Figure 5 for
the query setup).

In Figure 5 (right), we see that the base model without
calibration, QR, achieves 68% percent coverage on the in-
distribution user H∗, but achieves poor coverage (< 10%)
on out-of-distribution input schemes (H1-H4). In contrast,
calibration using ACQR increases coverage on the calibration
data from all in- and out-of-distribution users, increasing
coverage towards the desired level of 90%. Note that because
ACQR gives a coverage guarantee asymptotic in time, the
coverage achieved by ACQR nears but does not reach the



desired level given the limited trajectory length.
Next, we study how our uncertainty monitoring mechanism

is influenced by OOD input schemes. In Figure 5 (mid-
dle), our uncertainty monitoring mechanism (at the threshold
βgoal,human = 0.2, increased from 0.05 for noisy human
inputs) flags high uncertainty more frequently as the user
input schemes become more OOD. For example, user H1,
is relatively in-distribution: they give input via the z- and y-
displacement of the end effector which is similar to user H∗

from the training population.
Because of the similarity in input sequence, ACQR’s un-

certainty intervals are not as large for H1 and thus the monitor
only activates briefly along the middle of the trajectory (for
12 timesteps). On the other extreme, for our most OOD user,
H4, our monitor activates directly after the first input and
continues to flag each consecutive input as uncertain. Finally,
for users H2 and H3 whose input schemes are extremely
similar in pattern but still quite OOD, our uncertainty monitor
shows a similar detection pattern, indicating that our monitor’s
behavior is consistent.

Takeaway 4: While ensembles can sometimes capture the high-
uncertainty of the learned mapping, they are highly sensitive
to the problem domain and in general do not come with any
assurances.

We highlight this takeaway in the setting of GridWorld
and 7DOF Cup-grasping settings under uncertainty induced
by low-control precision. In the low-control precision con-
text, our target user is the same as the demonstrator. The
GridWorld domain requires demonstrators to navigate from
an open region through a narrow tunnel to reach the goal state
(Figure 6). Trajectories in Dtrain begin at random locations
in the open region with noisy actions representing variance
in paths taken at less critical regions. Once the user is in
the hallway, a narrow region where precision is critical, there
is no stochasticity in their actions. For calibration, DA

calib

contains 36 heldout trajectories of the user moving to the
goal from different starting states. Intuitively, we find that the
areas of highest uncertainty occur at the low-precision parts
of the task, where there are, for the target user, many paths to
approach the hallway. Once inside the tunnel, uncertainty is
low (right, Figure 6). In this domain, we see ACQR achieve
92.7% coverage with mean interval lengths of 0.86 while the
Ensemble struggles to achieve the target coverage (81.7%)
with mean interval lengths (0.697).

Although Ensemble mispredicts the actions more frequently
than ACQR in Gridworld setting, we see different results
in 7DOF Cup-Grasping environment (see Table I). Here,
Dtrain contains 7 kinesthetic demonstrations by a single user
where all demonstrations pick up the cup by the handle.
The trajectories are very precise near the handle, but less
precise in the path towards the cup where there is more
free space. We calibrate on the same target user, DA

calib,
who demonstrates 3 unseen test trajectories of picking up
the cup by the handle. Empirically, Ensemble exhibits higher
coverage than ACQR: ACQR achieves 93.8% coverage with

Low Precision

High Precision 0.1

1.04

αt

λt

Time t

Fig. 6: GridWorld with low control precision. The areas of
highest uncertainty (β = 1.0) occur as the heldout demonstra-
tion approaches the tunnel. Inside the tunnel, uncertainty is
low. αt decreases throughout the approach to the tunnel, and
increases once inside the tunnel.

TABLE I: Low-Control Precision: Coverage and Interval Size
for DA

calib

Algorithm Coverage Interval Length

Grid Goal Cup Grid Goal Cup

DA
calib DA

calib DA
calib DA

calib DA
calib DA

calib

ACQR 0.927 0.890 0.938 0.860 0.009 0.044

Ensemble 0.817 1.0 1.0 0.697 0.745 0.742

QR 0.910 0.994 0.402 0.689 0.012 0.035

mean interval lengths of 0.044, while Ensemble achieves
100% coverage with a larger mean interval length of 0.745.
While empirically our ACQR algorithm achieves coverage
of 1 − α = 0.9 in both environments, the Ensemble does
not provide any statistical guarantees and coverage can vary
significantly between environments. We hypothesize that the
latter point stems from the training action distribution: in
the Gridworld, the training action distribution is multi-modal
around the values {−1, 0, 1}, inducing high variance; in the
7DOF robot domain, the robot’s joint velocities are bounded to
[−1, 1] per-joint and the training action distribution has small
variance centered around the mean, making mis-prediction less
likely.

Takeaway 5: Our proposed detection mechanism based on the
uncertainty interval size is an effective way to separate high
and low uncertainty states and inputs.

Finally, we seek to verify the hypothesis that instances
of high uncertainty in the user’s demonstration at test time
can be meaningfully identified through our proposed detection
mechanism.

To test this, for each environment, we choose an uncertainty
threshold, β (tuned per domain) and test if there is a statis-
tically significant difference in prediction error ||ât − at||2 at
states with high uncertainty (uncertainty above β) and states



TABLE II: Prediction Error in Contexts with Uncertainty Induced by Low-Precision

Environment Target User β âH Error at Uncertain Inputs: mean, (std) âH Error at Certain Inputs T-test

GridWorld DA
calib 1.0 0.680, (0.415) 0.040, (0.073) t(966) = 36.62 p < 0.001

7DOF Goal DA
calib 0.05 0.014, (0.005) 0.006, (0.001) t(3109) = 55.47 p < 0.001

7DOF Cup DA
calib 0.12 0.018, (0.008) 0.010 (0.002) t(2041) = 36.57 p < 0.001

αt

λtGrasp at 
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Low 

uncertainty 


at grasp 

0.225

1.5

Time t

Fig. 7: 7DOF Cup-grasping with low control precision.
Demonstrations from a single user position the gripper to grasp
a cup at the handle (left). ACQR flags high uncertainty in the
path towards the cup, but has the lowest uncertainty at the
grasp location (right), where high precision is required.

with low uncertainty (uncertainty below or equal to β). While
ultimately this is a design parameter, we aim to understand if
even simple choices of β demonstrate statistically meaningful
separation between the classification of certain and uncertain
states.

If this is true, then this indicates the potential for using
our approach to proactively flag potential robot low-to-high
dimensional mapping errors before they occur and ask for
further assistance from the human.

We detail the results in the 7DOF Goal-reaching domain
with low-control precision uncertainty. Specifically, we per-
form a T-test of unequal variances [30] between the distribu-
tion of prediction errors for inputs flagged as anomalous by
our mechanism and the distribution of prediction errors for
inputs flagged as nominal on DA

calib (see Table II). We find
that our mechanism separates low and high uncertainty inputs
in a statistically significant manner (p < 0.001 in this envi-
ronment). We evaluate distributional separation using a T-test
to confirm the prediction errors from low and high uncertainty
inputs come from different distributions. Furthermore, the
mean prediction error is higher in uncertain states than certain
states. We find this result particularly promising, because this
indicates that ACQR can be used as a principled detection

mechanism for mitigating the robot’s learned mapping errors
and potentially providing a way of proactively asking the user
for assistance.

VII. DISCUSSION & CONCLUSION

Discussion. One limitation of our approach is that the model
cannot differentiate between these different types of semantic
uncertainty (e.g., preferences vs. control precision). Here, we
are excited to investigate how additional context (e.g., images
[27] or language [29]) can reduce the robot’s uncertainty
intervals.

Future work should also investigate seeking appropriate
assistance from human users, through other modalities, like
language [25, 45, 28].
Conclusion. In this work, we present Conformalized Teleop-
eration, an approach for quantifying uncertainty in learned
assistive teleoperation controllers that map from low-DoF
human inputs to high-DoF robot actions. We find that the
dataset with which the controller was trained on significantly
impacts the robot’s ability to infer the user’s intended high-
DoF action, and off-the-shelf controllers can be over-confident
even when interacting with significantly out-of-distribution
end-users. However, we find that our proposed adaptive con-
formal quantile regression approach can meaningfully detect
these state and inputs that cause uncertainty, providing a
promising path forward towards the detection and mitigation
of such assistive teleoperation failures.
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VIII. APPENDIX

A. Background: Adaptive Conformalized Quantile Regression
(ACQR)

Conformal prediction (CP) is a technique for constructing
prediction sets on the output of a model that are guaranteed to
contain the target output with specified high probability (i.e.,
coverage) [54].

While there are many variants of CP (see [1] for an
overview), we focus on Adaptive Conformalized Quantile
Regression (ACQR) [46], an instance of Adaptive Conformal
Inference [17]. We ground our work in this technique since
it is relevant to regression problems, yields asymptotic cover-
age guarantees without strong distributional assumptions, and
gives tight uncertainty bounds at each input [17, 46].

Setup: Quantile Regression (QR). Let Dtrain =
{(Xt, Yt)}nt=1 be a training dataset of n samples which
are drawn from an arbitrary joint underlying distribution,
PXY . We seek to train a regression model f which takes as
input a data point X and outputs Ŷ , and is trained on the
data Dtrain.

In addition to a point prediction (Ŷt), the regressor is
modified to output the estimated upper and lower conditional
quantiles during training:

{q̂αlo
(Xt), Ŷt, q̂αhi

(Xt)} ← f(Xt), ∀(Xt, Yt) ∈ Dtrain,
(14)

where q̂αlo
(Xt) is an estimate of the αlo-th conditional

quantile and q̂αhi
(Xt) is the αhi-th quantile estimate. During

training, q̂αlo
(Xt) is learned with an additional Pinball loss

[31, 46]. Unfortunately, the resulting empirical conditional
prediction interval Ĉ(Xt) = [q̂αlo

(Xt), q̂αhi
(Xt)] is not nec-

essarily calibrated.

Adaptive Conformal Quantile Regression (ACQR).
Assume the datapoints we see at test time are not i.i.d, and

the distribution generating the data is non-stationary. We want
to adaptively calibrate a parameter αt which will continually
adjust the estimated prediction intervals Ĉt(Xt), yielding time-
dependent intervals denoted by the subscript t. Here, we
assume access to data online, Dcalib, to adapt the prediction
intervals based on past performance of the regressor using a
variant of adaptive conformal prediction [17].

The critical step in ACQR is to, at each time t, compute the
conformity score, a quantification of error on the calibration
set. Dcalib is a heldout sequence {(Xt, Yt)}Tt=1 which we
see online. At each time t, we observe the new datapoint in
(Xt, Yt) ∈ Dcalib, and compute the conformity score S as:

S(Xt, Yt; f) = max{q̂αlo
(Xt)− Yt, Yt − q̂αhi

(Xt)}, (15)

which is the coverage error induced by the regressor’s quantile
estimates.

Let St be the set of conformity scores for all data points
through time t in Dcalib. In general, the magnitude of
S(Xt, Yt; f) is determined by the miscoverage error and its
sign is determined by if the true value of Yt lies outside
or inside the estimated interval. This quantity enables us to

conformalize the predicted quantiles and appropriately adjust
the estimated interval to account for over- and under-coverage.

Empirical Coverage Online Update. Our goal in conformal
prediction is to, for some miscoverage rate α, construct
prediction intervals such that the probability that the prediction
interval contains the correct label is almost exactly 1− α.

Given a new input Xt, ACQR constructs a prediction
interval for Yt by leveraging the conformity scores obtained
via Equation (15) on the calibration dataset. Mathematically,
the calibrated prediction interval for Yt is:

Ct(Xt) =
[
q̂αlo

(Xt)−Q1−αt
(St), (16)

q̂αhi
(Xt) +Q1−αt(St)

]
, (17)

where the Q1−αt
(St) := (1 − αt)(1 + 1

|Dcalib| )-th adaptive
empirical quantile of St = St−1 ∪ S(Xt, Yt; f) conformalizes
the prediction interval. Throughout this manuscript, we will
use the shorthand λt := Q1−αt(St) to refer to the adaptive
empirical quantile. Given the non-stationarity of the data
distribution, we examine the empirical miscoverage frequency
of the previous interval, and then decrease or increase a
time-dependent αt, which will asymptotically provide 1 − α
coverage [17] (see next section on coverage guarantee of
ACQR). With errt defined as in Equation 9, and fixing
step size parameter γ > 0, we perform the online update
αt+1 := αt + γ(α− errt) (Equation 8).

B. Visualizing Calibrated Intervals

Figure 8 provides a visual of the uncalibrated and calibrated
intervals for the joint angles of a trajectory performing the
7DOF Cup-Grasping task. The true values of the wrist joint
angle for the selected trajectory are shown in black. As the
uncalibrated interval (pink) mispredicts, calibration (orange)
expands the size of the intervals such that the mispredicted
values become covered.

C. Details on Experimental Setup

This section provides details on environments which are not
highlighted in the results section of the paper.

1) Latent Preferences: The latent preferences context
examines ACQR behavior in scenarios in which the variance
in the intended high-dimensional action stems from demon-
strations comprising the training dataset by users with varied
behaviors or preferences.

Task 1: GridWorld. We constructed this Gridworld domain
as an oversimplified environment to demonstrate the context
of latent preferences (Figure 9). The task is a 25x25 gridworld
in which the demonstrating agent must navigate through a
narrow hallway and then around a large obstacle to achieve the
goal state (Figure 9). Dtrain contains 48 noiseless trajectories,
where half move up and around the obstacle, and the other half
move down and around the obstacle. The state s is the position
of the agent, and the high-DoF action a is the movement in the
x-direction and y-direction of the agent. The low-DoF human
action h is h = 1 for all timesteps, representing the most
salient direction of rightward movement throughout the full
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Fig. 8: While the uncalibrated interval (pink) mispredicts the
true value of the joint angle (black), calibration (orange)
expands the size of the intervals such that the mispredicted
values become covered.

trajectory. Because of this underspecified input at the critical
state where the two strategies branch, the prediction interval
constructed by the model should be large.

We want to verify that ACQR correctly identifies states with
high uncertainty at the critical state. To do so, we calibrate on
a user, Alice, denoted DA

calib, who demonstrates 18 trajectories
of moving up and around. We find that our detection mecha-
nism with threshold at β = 1.5 correctly identifies uncertainty
at the critical state where the two preference modes diverge
(Figure 9). This tells us that the controller may not correctly
produce Alice’s desired high-DoF action at the critical state,
and the critical state is one where the robot should ask for
additional context or intervention.

2) Low-Control Precision: The low-control precision con-
text examines ACQR behavior in scenarios in which the
variance in the intended high-dimensional action occurs when
the training distribution Dtrain contains inconsistent demon-

High 
reward

Every strategy requires 
moving to the right 
through the hallway

Strategy 1

Strategy 2

Uncertainty at critical state

λt
αt

0.11

1.06

Time t

Fig. 9: The two preferences present in Dtrain for the gridworld
task are moving to the left and right of the obstacle (left).
We show a stylized trajectory from target user, Alice (DA

calib).
For DA

calib, ACQR flags uncertainty above a threshold of
1.5 at the critical state where the two preferences branch,
indicated by the orange dot. αt decreases at the point of
uncertainty, and increases for the rest of the trajectory, as
the model continuously predicts the human actions correctly.
λt represents the multiplicative factor by which the quantile
intervals are expanded. λt increases at the point of uncertainty,
as αt decreases, but rises as the model gains confidence
once the agent has passed the critical state. The orange bar
reinforces timesteps where the uncertainty was above the
defined threshold.

strations from a single user.
3) Low-Dimensional Input Schemes: The low-dimensional

input schemes context examines ACQR behavior in scenar-
ios in which the variance exists not in the intended high-
dimensional robot actions, but in the different ways in which
human operators give low-dimensional inputs to execute the
same high-DOF action. We examine this type of uncertainty as
being present only in the calibration dataset. We collected data
from three, real human operators, providing labels on pairs
of robot states throughout two calibration trajectories. The
calibration trajectory to the blue goal contained 35 timesteps,
and the trajectory to the red goal contained 100 timesteps.
Human operators labeled the robot action taken at each
timestep. For each query, operators were able to replay the
robot action as many times as needed to determine a low-
dimensional input label. Operators provided the label through
a graphical interface, where they clicked on a screen to provide
what would represent their precise joystick input (see Figure
5 (left) to understand the query setup).

Task 2: 7DOF Goal-Reaching.
The training dataset Dtrain contains 60 kinesthetically

demonstrated trajectories, by a single user Alice, where all
demonstrations move the end effector to the blue goal. The
trajectories are very precise near the object, but less precise
in the path towards the object where there’s more free space.
Alice employs a heuristic strategy to deterministically generate
ut
H for consecutive state pairs, where ut

H is the change in
x-direction and y-direction of the end effector from st to
st+1. We calibrate on the same target user, Alice, DA

calib, who
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Fig. 10: A single demonstrator provides demonstrations to a
goal (left). ACQR flags high uncertainty throughout the trajec-
tory’s movement in free space, but has the lowest uncertainty
near the object (right), where high precision is exhibited in
the training data.

demonstrates 6 unseen test trajectories of reaching the blue
goal. ACQR flags high uncertainty (β = 0.05) throughout the
trajectory, but has the lowest uncertainty at the end near the
object (Figure 10).

Aside. It’s important to recognize that αt does not necessarily
increase monotonically as a measure of uncertainty. αt is the
empirical quantile of the set of expansion factors needed to
reach approximately 1−αt coverage. If the model mispredicts
repeatedly, the quantiles need to be expanded by increasingly
large factors, λt, in order to cover the true value. As λt,
continue to be appended to set St−1, the set St increasingly
contains large expansion factors. As a result, the αt-adjusted
quantiles do not miscover due to the present of large λt in
St. Thus, αt+1 may decrease while the size of the intervals
(uncertainty) stays high.

D. Further Results Supporting Takeaway 4: Our proposed
detection mechanism based on the uncertainty interval size is
an effective way to separate high and low uncertainty states
and inputs.

In the latent preferences context, we also find that our
mechanism separates low and high uncertainty inputs in a
statistically significant manner (p < 0.05), and the mean
prediction error is higher in uncertain states than certain states
(Table III).

E. Coverage and Interval Size

In the latent preferences context, ACQR achieves ap-
proximately the desired coverage on DA

calib (Table IV) and
DB

calib (Table V). On DA
calib, ACQR achieves coverage close

Timestep

U
nc

er
ta

in
ty

U
nc

er
ta

in
ty

U
nc

er
ta

in
ty

U
nc

er
ta

in
ty

U
nc

er
ta

in
ty

0 100

0 100

0 100

0 100

0

3
0

3
0

3

0

3

0t = Tt = 0

u0:T
H ∈ 𝒟calib

H*

H1

H2

H4

 Data 

Collection
𝒟calib

High-
DOF aH

st

st+1

Low-Dim 
Label uH

+1
+1

−1

−1

H3

 Coverage (%)

H*

H1

H2

H4

H3

ACQR
QR

0 10020 40 60 80

RED
Coverage vs Low-Dim 


Input Strategy

0 100

3

ACQR Uncertainty

Fig. 11: (Left) 7DOF goal-reaching (red) with out-of-
distribution low-dimensional input schemes. The base
model without calibration, QR, achieves less than 40% percent
coverage on both in-distribution and out-of-distribution input
schemes (H0-H4). Calibration using ACQR increases cover-
age on the calibration data of all users, increasing coverage
towards, but not yet at, the desired level of 90%. (Right)
Our uncertainty monitoring mechanism, at the threshold β =
0.4, flags high uncertainty for these out-of-distribution input
schemes. The uncertainty tracking is able to self-assess its
inability to correctly map the intended high-DOF actions when
users give inputs in a way the base teleoperation controller has
not been trained on.

to Ensemble with a mean interval length less than or approx-
imate to the length of Ensemble. The DB

calib user in 7DOF
Goal-Reaching are deliberately noisy, and the DB

calib user
in 7DOF Cup-Grasping chooses only to grasp by the lip,
which requires greater reconfiguration and thus more noisy
than the handle grasp. As a result, the mean interval lengths
needed by ACQR are larger than Ensemble for these two
environments with DB

calib (Table V). QR does not achieve
sufficient coverage, indicating the need to ensure calibration
is performed to the end user.

In the low-control precision context, ACQR achieves
approximately the desired coverage on DA

calib (Table I). On
DA

calib, ACQR achieves coverage close to Ensemble with a
mean interval length less than that of Ensemble. QR does not
achieve sufficient coverage.

F. Further Results Supporting Takeaway 5: With human an-
notators providing varied, OOD low-dim input labels, ACQR
ensures coverage over QR, and our uncertainty monitoring
mechanism identifies higher uncertainty on users providing
out-of-distribution inputs.

Our third uncertainty context examines variance as a re-
sult of different low-dimensional input schemes employed by
target users. We highlight this takeaway in the setting of
7DOF Goal-reaching. We fix the base model and calibration
trajectory. For the base model, we use the model trained
from the setting of 7DOF Goal-reaching with diverse latent



TABLE III: Prediction Error in Contexts with Uncertainty Induced by Latent Preferences

Environment Target User β âH Error at Uncertain Inputs: mean, (std) âH Error at Certain Inputs T-test

GridWorld DA
calib 1.0 0.945, (< 0.001) 0.0725, (0.1927) t(754) = 19.18, p < 0.001

GridWorld DB
calib 1.0 1.055, (< 0.001) 0.0914, (0.27353) t(754) = 14.93, p < 0.001

7DOF Goal DA
calib 0.05 0.007, (0.002) 0.006, (0.002) t(5627) = 26.55, p < 0.001

7DOF Goal DB
calib 0.05 0.010, (0.006) 0.007, (0.003) t(9655) = 39.99, p < 0.001

7DOF Cup DA
calib 0.15 0.014, (0.009) 0.009, ( 0.007) t(4497) = 20.10, p < 0.001

7DOF Cup DB
calib 0.15 0.029, (0.007) 0.009, (0.008) t(2041) = 61.21, p < 0.001

TABLE IV: Latent Preferences: Coverage and Interval Size for DA
calib

Algorithm Coverage Interval Length

Grid Goal Cup Grid Goal Cup

DA
calib DA

calib DA
calib DA

calib DA
calib DA

calib

ACQR 0.929 0.919 0.926 0.226 0.018 0.037

Ensemble 0.571 1.0 1.0 0.692 1.675 0.614

QR 0.833 0.821 0.527 0.214 0.016 0.016

TABLE V: Latent Preferences: Coverage and Interval Size for DB
calib

Algorithm Coverage Interval Length

Grid Goal Cup Grid Goal Cup

DB
calib DB

calib DB
calib DB

calib DB
calib DB

calib

ACQR 0.929 0.902 0.883 0.199 0.028 0.055

Ensemble 0.619 1.0 1.0 0.697 1.672 0.653

QR 0.833 0.688 0.404 0.189 0.017 0.019

preferences. Training demonstrators do not manually provide
low-dimensional inputs, but instead employ a single heuristic
strategy to deterministically generate uH for consecutive state
pairs, using the change in x-direction and y-direction of the
end effector.

In the calibration phase, target users provide low-
dimensional input labels for two calibration trajectories: one
to the blue goal, one to the red goal. We will focus this section
on results for the calibration trajectory to the red goal. User
H0 gives input uH equal to the change in x-direction and y-
direction of the end effector, representing an in-distribution
low-dimensional input scheme. Next, user H1 gives input
uH equal to the change in z-direction and y-direction of the
end effector, representing a slightly out-of-distribution low-
dimensional input scheme. Users H2, H3, H4 represent the
three human target users (see their inputs in Figure 11).

In Figure 11 (left), we see that the base model without
calibration, QR, achieves less than 40% percent coverage
on both the in-distribution user H0 and out-of-distribution
input schemes (H1-H4). Calibration using ACQR increases
coverage on the calibration data from all in- and out-of-
distribution users, increasing coverage towards the desired
level of 90%.

In Figure 11 (right), our uncertainty monitoring mechanism,

at the threshold β = 0.4, which we increased from 0.05 for
noisy human inputs, flags high uncertainty for these out-of-
distribution input schemes. The uncertainty tracking flags high
uncertainty frequently for users who provide low-dimensional
control inputs in out-of-distribution ways.

G. Human Labeling Cost of Low-Dimensional Input

In analyzing uncertainty in the low-dimensional input
schemes context, we tested realistic variance in the notions of
suitable low-dimensional across different users. We collected
data from three human operators, providing labels on pairs
of robot states throughout two calibration trajectories. The
calibration trajectory to the blue goal contained 35 timesteps,
and the trajectory to the red goal contained 100 timesteps.
Human operators labeled the robot action taken at each
timestep. For each query, operators were able to replay the
robot action as many times as needed to determine a low-
dimensional input label. Operators provided the label through
a graphical interface, where they clicked on a screen to provide
what would represent their precise joystick input (see Figure 5
(left)). Each annotation session was timed, and the annotation
time was averaged over each timestep across both trajectories
to determine an average labeling cost in seconds per query
(Table VI). As a result, these labeling costs per query include



the loading time of the interface. We present these labeling
costs as merely an observation of the labeling cost associated
with our interface. We recognize that labeling costs may differ
based on the input interface, presentation of robot action, and
amount of operator experience in controlling robot systems.
While the cost is not too high on a per-state basis, relaxing
the need for per-timestep labels for calibration is an area for
future work.

TABLE VI: Labeling Cost

Human Operator Avg. Query Respond Time (s)
H2 10
H3 8
H4 7
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