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ABSTRACT

In interactive imitation learning (IL), uncertainty quantification offers a way for
the learner (i.e. robot) to contend with distribution shifts encountered during de-
ployment by actively seeking additional feedback from an expert (i.e. human)
online. Prior works use mechanisms like ensemble disagreement or Monte Carlo
dropout to quantify when black-box IL policies are uncertain; however, these
approaches can lead to overconfident estimates when faced with deployment-time
distribution shifts. Instead, we contend that we need uncertainty quantification
algorithms that can leverage the expert human feedback received during deploy-
ment time to adapt the robot’s uncertainty online. To tackle this, we draw upon
online conformal prediction, a distribution-free method for constructing prediction
intervals online given a stream of ground-truth labels. Human labels, however,
are intermittent in the interactive IL setting. Thus, from the conformal prediction
side, we introduce a novel uncertainty quantification algorithm called intermittent
quantile tracking (IQT) that leverages a probabilistic model of intermittent labels,
maintains asymptotic coverage guarantees, and empirically achieves desired cov-
erage levels. From the interactive IL side, we develop ConformalDAgger, a new
approach wherein the robot uses prediction intervals calibrated by IQT as a reliable
measure of deployment-time uncertainty to actively query for more expert feedback.
We compare ConformalDAgger to prior uncertainty-aware DAgger methods in
scenarios where the distribution shift is (and isn’t) present because of changes
in the expert’s policy. We find that in simulated and hardware deployments on
a 7DOF robotic manipulator, ConformalDAgger detects high uncertainty when
the expert shifts and increases the number of interventions compared to base-
lines, allowing the robot to more quickly learn the new behavior. Project page at
cmu-intentlab.github.io/conformalized-interactive-il/.

1 INTRODUCTION

End-to-end robot policies trained via imitation learning (IL) have proven to be an extremely powerful
way to learn complex robot behaviors from expert human demonstrations (Price & Boutilier, 2003;
Schaal, 1996; Argall et al., 2009; Levine et al., 2016; Jang et al., 2022; Chi et al., 2023; Kim et al.,
2024). At the same time, distribution shift is a core challenge in this domain, hampering the reliability
of deploying such robot policies in the real world (Chang et al., 2021).

One way to combat this is via uncertainty quantification. By training an ensemble of policies (Menda
et al., 2019) or via monte-carlo dropout during training (Cui et al., 2019), the robot learner can
detect uncertain states and actively elicit additional action labels from the human expert online via an
interactive IL framework (such DAgger (Ross et al., 2011)). At their core, these prior uncertainty-
aware IL methods look to the training demonstration data as a proxy for deployment-time uncertainty.
Any human expert labels requested at deployment time using this uncertainty estimate are simply
stored for later re-training; the uncertainty estimate itself is not adapted online to the expert data nor
does it inform any subsequent queries during the deployment episode.

Instead, we contend that the human feedback requested and received during deployment time is a
valuable uncertainty quantification signal that should be leveraged to update the robot’s uncertainty
estimate online. If properly accounted for, the updated uncertainty estimate will influence when
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Figure 1: Conformalized Interactive Imitation Learning. The robot learns an initial policy via
imitation learning to wipe a line drawing by following a straight path. When the initial policy is
deployed, ConformalDAgger calibrates the robot’s uncertainty (represented by red prediction interval
boxes) based on feedback received from the human during the interactive IL loop. (left) The robot
refrains from asking questions when its uncertainty is low because the expert policy at deployment
time is aligned to the demonstrations on which the learner was trained. (right) When the human shifts
in their task strategy from the training data distribution, the robot uncertainty increases and enables it
to actively query for more labels.

the robot asks for more help, enabling it to targetedly probe the human expert to improve policy
performance. The challenge is how to do this online uncertainty update in the presence of the
end-to-end “black box” policies underlying modern imitation learning.

To tackle this, we take inspiration from online conformal prediction (Gibbs & Candes, 2021) which
is a distribution-free way to represent uncertainty via prediction sets constructed on the output of a
black-box model. Our first contribution is extending online conformal prediction to the case where
labels are observed intermittently, as is the case in interactive IL with an expert. Specifically, we
instantiate Intermittent Quantile Tracking (IQT), an algorithm which adjusts prediction intervals
online to ensure that the true label lies within the predicted interval with high-probability despite
probabilistic access to labels. On standard conformal time series datasets, we empirically find that
IQT achieves empirical coverage close to the desired level by boosting the size of the calibrated
intervals based on the likelihood of observing feedback.

With our intermittent conformal algorithm in hand, we develop ConformalDAgger, a new interactive
IL approach wherein the robot uses prediction intervals calibrated by IQT as a reliable measure
of deployment-time uncertainty to actively query for more expert feedback. We instantiate Con-
formalDAgger in a simulated 4D robot goal-reaching task and in hardware on a 7 degree-of-freedom
robotic manipulator that uses a state-of-the-art Diffusion Policy (Chi et al., 2023) learned via IL to
perform a sponging task (Figure 1). We study how ConformalDAgger compares to prior uncertainty-
aware DAgger methods when the deployment-time and training-time datasets are from the same
distribution (left, Figure 1) as well as a shifted one (right, Figure 1). Specifically, we instantiate a po-
tential source of distribution shift as expert policy shift: the training-time expert wipes a line-drawing
with a straight-line path while the deployment-time expert refines their strategy to be a zigzag path
(Figure 1). We find that ConformalDAgger automatically increases uncertainty online when the
expert shifts, resulting in more expert labels queries compared to EnsembleDAgger and allowing our
approach to rapidly learn a policy aligned with the expert’s intentions.

2 RELATED WORK

Interactive Imitation Learning (IL) with Online Experts. Interactive IL is a branch of imitation
learning wherein a robot learner can query a (human) expert to receive additional labels either
during or after task execution (Celemin et al., 2022). A foundational approach for interactive IL is
DAgger (Dataset Aggregation) (Ross et al., 2011), which iteratively augments the training dataset by
aggregating data from the expert and learner policies and assuming the expert is stationary. In the
online case, the robot learner can cede control to the expert at any time to get additional state-action
data (also known as robot-gated feedback) or the expert can actively intervene at any time (also
known as human-gated feedback) (Kelly et al., 2019). From the learner’s perspective, a key question
is when to request feedback from the expert so that it minimizes expert effort but also minimizes
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negative events caused by an erroneous policy (e.g., running into a wall). On one hand, prior works
focus on minimizing human effort by constraining robot requests via a limited human attention model
(Hoque et al., 2023) or a budget of human interventions (Hoque et al., 2021a;b). On the other hand,
prior works prioritize deployment-time safety by classifying safe versus unsafe states (SafeDAgger
(Zhang & Cho, 2017), Replay Estimation (Swamy et al., 2022)), estimating uncertainty via ensemble
disagreement (EnsembleDAgger (Menda et al., 2019)), or Monte Carlo dropout (Cui et al., 2019).
We present ConformalDAgger, which uses our novel uncertainty quantification method grounded
in conformal prediction to adaptively increase the learner requests for help under uncertainty and
decrease the number of requests when confident.

Interacting with Non-stationary Experts. A core kind of distribution shift we study in this work is
human expert distribution shift. This can occur for a variety of reasons, from human teleoperators
having biases when teaching robots (Thomaz et al., 2006; Thomaz & Breazeal, 2008), to generating
different data distributions because of suboptimality (Grüne-Yanoff, 2015; Thompson, 1999) or varied
risk tolerance (Kwon et al., 2020). Moreover, simply observing robot behavior can influence how
humans react or teach robots over time (Hong et al., 2024; Sagheb et al., 2023; Xie et al., 2021).
Despite its prevalence in the real world, the majority of interactive IL works assume a stationary expert
policy (Likmeta et al., 2021; Shin et al., 2023; Zheng et al., 2022). Our conformalized imitation
learning approach takes a key step towards closing this gap by developing an online conformal
prediction algorithm that can account for expert distribution shift.

Online Conformal Prediction. Conformal prediction is a distribution-free uncertainty quantification
method for constructing prediction intervals for both classification and regression problems (An-
gelopoulos & Bates, 2023; Romano et al., 2019; 2020; Zaffran et al., 2022), as well as for offline
or online data. We focus on the online setting (e.g., timeseries) where uncertainty quantification is
performed on streaming pairs of input-label data that are not necessarily i.i.d. (Gibbs & Candes,
2021). Broadly speaking, there are two predominant algorithms in this setting: adaptive conformal
inference (ACI) Gibbs & Candes (2021); Gibbs & Candès (2024); Bhatnagar et al. (2023); Zaffran
et al. (2022) and quantile tracking (QT) Angelopoulos et al. (2024a). Both are online gradient
descent-based methods which guarantee asymptotic coverage in the online setting. Unlike ACI which
is prone to infinitely sized intervals after a series of miscoverage events, QT directly estimates the
value of the empirical quantile itself, ensuring coverage with finite intervals. In this work, we relax
the assumption that labels must be observed at each time point in the streaming data and extend the
online conformal paradigm to ensure coverage in the intermittent label regime.

Conformal Prediction for Robotics. Recently, conformal prediction has become popular in the
robotics domain in part due to the distribution-free guarantees it provides for arbitrarily complex
learned models present within modern robotics pipelines. Specifically, conformal prediction has been
used to provide collision-avoidance assurances (Chen et al., 2021; Lindemann et al., 2023; Dixit et al.,
2023; Muthali et al., 2023; Taufiq et al., 2022; Dietterich & Hostetler, 2022; Lin & Bansal, 2024),
calibrate early warning systems (Luo et al., 2022), and quantify uncertainty in large language model
based planners (Ren et al., 2023; Lidard et al., 2024). There are several core challenges with the
input-and-label data encountered in robotics: data is non-i.i.d. (e.g., sequential decision-making), data
distributions are non-stationary (e.g. changing environment conditions), and labels are intermittently
observed (e.g., limited expert feedback in the IL domain). By extending online conformal prediction
to the intermittent label setting, we take a step towards addressing these challenges.

3 ONLINE CONFORMAL PREDICTION WITH INTERMITTENT LABELS

xt yt

errtobst

qt

xt−1 yt−1

errt−1obst−1

qt−1

Figure 2: Graphical Model of IQT. Inter-
mittent quantile tracking introduces random
variable obst, which represent the receiving of
ground truth observations at timestep t. obst
is distributed according to pt, which may de-
pend on xt or history through t− 1.

From the uncertainty quantification side, our core
technical contribution is extending online conformal
prediction to settings where ground truth labels are
intermittently observed. We present our algorithm
in the context of quantile tracking for brevity and
relevance to our interactive IL experiments. However,
we also derive an extension of ACI to intermittent
labels in the Appendix Section B.

Setting. We focus on online conformal prediction
in the adversarial setting, such as time-series fore-
casting. This considers an arbitrary sequence of data
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points (xt, yt) ∈ X ×Y , for t = 1, 2, ..., that are not
necessarily I.I.D. Our goal is to produce prediction
sets on the output of any base prediction model such that the sets contain the true label with a specified
coverage probability. Mathematically, at each time t, we observe xt and seek to cover the true label
yt with a set Ct(xt), which depends on a base prediction model, f̂ : X → Y . The base model
takes as input the current xt and outputs prediction ŷt; in the non-intermittent case, we observe the
ground-truth label yt after each prediction.

Background: Quantile Tracking. The quantile tracking (QT) algorithm Angelopoulos et al. (2024b)
implicitly seeks to track the value of the 1− α quantile via online gradient descent on the quantile
loss (Koenker & Bassett Jr, 1978). As in Angelopoulos et al. (2024b), we leverage a bounded
nonconformity score function: s : X × Y → [0, B] where 0 < B <∞, to quantify the error made
by the initial prediction of the base model. We assume the nonconformity score function s(xt, yt) is
negatively oriented (lower values indicate less nonconformity or greater prediction accuracy). Let
qt represents the estimated 1− α quantile of the score sequence st, t ∈ N. Prediction intervals are
constructed using the nonconformity score function:

Ct(xt) = {y ∈ Y : s(xt, yt) ≤ qt} (1)

To expand or contract the prediction intervals, the level qt is adjusted via the online update:

qt+1 = qt + γt(errt − α), (2)

where γt > 0 is a time-varying step size and errt = 1yt /∈Ct(xt) is the empirical miscoverage at t.

Intuitively, this update increases the quantile threshold when the model continuously miscovers and
decreases the quantile when the model coverage is performant. For arbitrary step size γt with no
assumptions on the sequence of data points (x1, y1), (x2, y2), ... and an initial quantile threshold
q1 ∈ [0, B], the quantile tracking update satisfies Equation 3 (Theorem 2 of Angelopoulos et al.
(2024b)): ∣∣∣∣∣ 1T

T∑
t=1

1yt∈Ct(xt) − (1− α)

∣∣∣∣∣ ≤ B +max1≤t≤T γt
T

· ||∆1:T ||1 (3)

where ∆ is defined ∆1 = γ−1
1 and ∆t = γ−1

t − γ−1
t−1 for t ≥ 2, and ∆1:T = (∆1, . . . ,∆T ). We can

see that limT→∞
1
T

∑T
t=1 1 − errt approaches 1 − α. This guarantees quantile tracking gives the

1− α long-term empirical coverage frequency.

Intermittent Quantile Tracking (IQT). Our paradigm lifts the assumption that the ground truth
label yt is observed constantly, but rather with some known probability at each timestep. Let the
binary random variable obst ∈ {0, 1} represents whether the robot observes label yt at timestep t:

obst :=
{
1, if yt observed
0, otherwise .

(4)

We introduce a probabilistic observation model, pt := P(obst = 1|xt), where pt represents the
probability of receiving feedback, which can be dependent on input xt (and past history, this
possibility is demonstrated by the dotted line in Figure 2). A key observation under the paradigm of
intermittent labels is that errt may not at every timestep be accessible to the algorithm if yt is not
provided, but the value of errt exists at every timestep even if inaccessible.

Our quantile tracking update under probabilistic observations, which we call Intermittent Quantile
Tracking (IQT), is defined (Equation 5):

qt+1 = qt +
γt
pt
(errt − α)obst (5)

Proposition 1. Let (X1, Y1), (X2, Y2), ... be an arbitrary sequence of data points, and let s :
X × Y → [0, B]. Let γt be an arbitrary positive sequence, and fix an initial threshold q1 ∈ [0, B].
Then Intermittent Quantile Tracking (IQT) satisfies for all T ≥ 1:∣∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣∣ ≤ B +max1≤t≤T
γt

pt

T
· ||∆1:T ||1 (6)
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Figure 3: IQT on Amazon Stocks with AR base model: Coverage & Interval Visualization.
We set pt = 0.1,∀t to simulate seeing the true price only 10% of the time and show the prediction
interval for 1 seed and coverage averaged over 5 seeds (shaded error on coverage plots show standard
deviation). IQT-pd is prone to large intervals when lr is large, and boosts coverage over IQT-pi when
lr is small.

Refer to full proof in Appendix Section A. Note that when feedback is constant (i.e. pt = 1), obst = 1
for all timesteps, and IQT reduces to online quantile tracking with arbitrary step sizes.

Practical Note: Choosing Gamma. In practice, an important decision is the choice of γt. Prior
works in quantile tracking with constant labels (Angelopoulos et al., 2024a) choose γt = lrB̂t, where
B̂t := maxt−k≤r≤t−1 s(xr, yr), k represents a look-back window across the previous timesteps with
observed ground truth labels, and lr is a small constant. On our domains, we find that choosing γt
such that it contains B̂t improves empirical coverage over the choice of a constant γt = γ.

3.1 EXPERIMENTS: INTERMITTENT QUANTILE TRACKING ON STANDARD TIMESERIES DATA

We first empirically evaluate our approach for intermittent conformal quantile tracking on time
series benchmarks used in the online conformal prediction literature. The goal of testing on standard
conformal datasets is to evaluate (1) how different choices of step size γt affect the empirical coverage
of IQT, and (2) validate that under probabilistically intermittent observations, IQT maintains coverage
close to the desired level. We use the findings from these experiments to inform how we leverage
intermittent quantile tracking in the interactive imitation learning domain.

Setup. We test on three benchmark datasets from Angelopoulos et al. (2024a): (1) Amazon stock
prices, (2) Google stock prices (Nguyen, 2018), and the (3) Elec2 dataset (Harries, 1999). We test
four base prediction models, f̂ , all trained via darts (Herzen et al., 2022) to see if IQT consistently
maintains coverage close to the desired level. We present the Autoregressive (AR) model with 3 lags
for brevity in the main text and defer the other model results to the Appendix. Our nonconformity
score is the asymmetric (signed) residual score. We measure (1) marginal coverage over the time
series, (2) longest miscoverage error sequence, and (3) mean prediction interval size.

Observation Models. We test three different observation frequencies: (1) infrequent pt = 0.1,∀t,
(2) partial pt = 0.5,∀t, and (3) frequent pt = 0.9,∀t. We focus in this section on the results for
infrequent observations, and discuss further results in the Appendix Section C.

Methods. We compare two variants of our IQT algorithm by controlling if time-varying step-size γt
in Equation 5 depends or does not depend on pt. For each variant, we test lr ∈ [1, 0.1, 0.01]. IQT
with a pt-independent update (IQT-pi) uses γt = lrB̂tpt. The quantile tracking update reduces to
qt+1 = qt + lrB̂t(errt−α)obst. Since the pt term cancels out in the update, we refer to this model as
the p-independent update. IQT with a pt-dependent update (IQT-pd) uses γt = lrB̂t. Since the pt
term remains in the update qt+1 = qt +

lrB̂t

pt
(errt−α)obst, we refer to this model as the p-dependent

update. For both variants, we set our desired coverage to 1− α = 0.9 for all experiments. We set
lookback window k = 100 timesteps for the Amazon stock price data.

Results. We center our discussion on the Amazon stock price results for IQT-pd and IQT-pi with
AR base model under ground truth labels observed with pt = 0.1 frequency, as the intermittent
setting is our focus. See Appendix Section C for further results on other base models and datasets.
Inversely scaling the quantile tracking step size by pt causes IQT-pd to construct larger intervals than
IQT-pi. Figure 3 shows the prediction coverage as a moving average (window=50) for 5 random
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Figure 4: ConformalDAgger Framework. After obtaining an initial learner policy πr (left),
ConformalDAgger calibrates uncertainty during the interactive deployment episode with the expert
via intermittent quantile tracking (center). When the size of the uncertainty intervals is high, the
robot actively queries the user for feedback. When uncertainty is low, the robot executes its predicted
action and the human may independently intervene with some low probability. After deployment
episode ends, the data is aggregated and the learner retrained (arrow from right to left).

seeds and interval sizes for one seed. When lr is high (1.0), IQT-pi and IQT-pd achieve comparable
coverage, but IQT-pd is prone to constructing much larger prediction intervals than IQT-pi. Smaller
and midsized learning rates (lr = 0.01, 0.1) regulate the size of IQT-pd intervals, leading to tight
prediction intervals which maintain desired coverage levels.

4 CONFORMALDAGGER: A CALIBRATED APPROACH TO ASKING FOR
EXPERT FEEDBACK

Since intermittent quantile tracking enables us to rigorously quantify the learner’s uncertainty despite
the fact that the labels are only revealed intermittently (i.e., when the expert intervenes), we can
develop ConformalDAgger: a new way for the robot to tradeoff between acting autonomously and
strategically asking for help when uncertainty increases.

Setup. ConformalDAgger treats the robot’s policy as the base model f̂ := πr on which we
perform intermittent quantile tracking. The initial novice policy πr

0 : X → A is trained on initial
demonstration data D0 of task T performed by the expert πh

0 . Here, X represents the policy’s inputs
(e.g., image observations, proprioception), Y are the labels representing the robot’s actions (e.g.,
future end-effector positions). During deployment, the robot policy generates a sequence of input-
predicted action pairs (xt, a

r
t ) ∈ X ×Y for t = 1, 2, ..., that are temporally correlated. Relatedly, for

each input xt the learner observes, there is a corresponding expert action (xt, a
h
t ) ∈ X × Y that is

the ground-truth label we seek to cover via our IQT prediction intervals Ct(xt).

Observation Model. A key component of IQT is the observation likelihood model, pt = P(obst =
1 | xt). A nice byproduct of this model is that we can naturally derive a feedback model that is
simultaneously human- and robot-gated by decomposing the observation model into the combination
of both gating functions. Intuitively, the likelihood of observing the expert feedback at t is given by
the probability that the human chooses to give feedback or the robot asks the expert for feedback. Let
obsht ∈ {0, 1} be a random variable representing observing a human-gated feedback (if obsht = 1)
where the expert initiates providing an action label aht = πh(xt) for xt. Let obsrt ∈ {0, 1} be
a random variable representing robot-gated feedback, where the robot asks the expert for a label
if obsrt = 1. We assume that if the robot elects to ask a question, the human will respond with
probability 1. Our observation model takes the form:

pt := P(obst = 1 | xt) = P(obsht = 1 ∨ obsrt = 1 | xt) (7)

= P(obsht = 1 | xt) + P(obsrt = 1 | xt)− P(obsht = 1 | xt)P(obsrt = 1 | xt) (8)

While our approach is not prescriptive about these models, in our experiments we model P(obsht = 1 |
xt) = c as a small constant to represent infrequent human interventions. We describe the robot-gated
likelihood model P(obsrt = 1 | xt) below, informed by our uncertainty estimates.
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Algorithm 1 ConformalDAgger (changes from DAgger (Ross et al., 2011) highlighted)

1: Collect initial demonstration data D0 from expert πh
0 and train initial learner policy πr

0 .
2: for interactive deployment episode i = 0 : M do
3: Initialize qlo0 , qhi0 .
4: for deployment timestep t = 1 : H do
5: Get predicted action label: art ← πr

i (xt)
6: Construct calibrated uncertainty interval: Ct(xt) = [art − qlot , art + qhit ].
7: if robot queries (sample P(obsrt | ot)) or human intervenes (sample P(obsht | ot)) then
8: IQT update: qlot+1 ← qlot + γt

pt
(errt − α)obst with expert action aht ← πh

i (xt).
9: IQT update: qhit+1 ← qhit + γt

pt
(errt − α)obst with expert action aht ← πh

i (xt).
10: else
11: IQT update: qlot+1 ← qlot .
12: IQT update: qhit+1 ← qhit .
13: Aggregated dataset with observed state and expert action pairs: Di+1 ← Di ∪ {(x, πh

i (x))}
14: Retrain learner: πr

i+1 ← argminπ L(Di+1)

Quantifying Uncertainty: IQT. In the interactive IL setting, IQT begins with initial upper and lower
quantiles in the action space, qlo0 , qhi0 ∈ A. The nonconformity score is a residual on the predicted
(ar) versus expert (ah) action. Let slot (a

r
t , a

h
t ) = art − aht be the lower residual (referred to as slot for

brevity), and shit (art , a
h
t ) = aht − art be the upper residual (referred to as shit ). If the expert action

aht is observed, we compute the upper and lower miscoverage of qlot , qhit as two indicator vectors:
errlot = (slot < qlot ) and errhit = (shit < qhit ). IQT then updates the quantile estimates online to obtain
qlot+1, q

hi
t+1 via the update rule from equation 5. At the next timestep, the adjusted prediction interval

is constructed with Ct+1(xt+1) = [art+1 − qlot+1, a
r
t+1 + qhit+1]. If the expert action is not observed,

obst = 0, then qlot+1 = qlot and qhit+1 = qhit and the prediction interval size remains the same. Note
that although errt is not known in the case where the expert does not provide an action label, IQT
does not require it; IQT simply makes no change to the quantile estimate. In our simulated and
hardware experiments, our action space, qlo0 , and qhi0 , are vector-valued. Our experiments instantiate
IQT for continuous vectors, but the approach extends to discrete-valued action spaces.

Leveraging Uncertainty: Asking for Help. Finally, the calibrated intervals Ct+1(xt+1) constructed
by IQT enable us to design a new robot-gated feedback mechanism. Specifically, the model P(obsrt |
xt) is informed by the calibrated interval size, u(xt+1) :=|| Ct+1(xt+1) ||2. In our simulated
experiments, we use P(obsrt | xt) = σ(β[u(xt;π

r)− τ ]) where τ is some uncertainty threshold, β is
a temperature hyperparameter, and σ is the sigmoid function. In our hardware experiments, we take
τ to be a hard threshold above which P(obsrt | xt) = 1, and below which P(obsrt | xt) = 0.

ConformalDAgger Algorithm. We summarize ConformalDAgger in Algorithm 1, highlighting the
difference from traditional DAgger (Ross et al., 2011). The learner interacts with the intermittent
expert during M interactive episodes. At the start of each, qlo, qhi and are reset. Each episode lasts
H time steps and the intermittently-observed expert state-action pairs (xt, a

h
t ) are aggregated with

the prior training data in a fixed size training buffer to form the updated dataset, Di+1, which enables
us to retrain the learner πr

i+1 for the next deployment episode.

Two features of our setting make it difficult to prove we maintain DAgger performance guarantees:
intermittent expert feedback even with a stationary expert, and the possibility of a dynamic expert
even with feedback at every state along learner rollouts. Similar to approaches like (Kelly et al., 2019)
and Menda et al. (2019), our approach helps to contend with these constraints that reflect real-world
challenges in constrained expert capacity and potential shift.

5 SIMULATED INTERATIVE IMITATION LEARNING EXPERIMENTS

To evaluate ConformalDAgger, we run a series of simulated experiments with access to an oracle
expert. We ground our experiments in a simulated robot goal-reaching task (left, Figure 5) and study
scenarios where the distribution shift occurs due to the expert’s changing preference in goal location.
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5.1 EXPERIMENTAL SETUP

Task & Initial Learner Policy. The robot learns a neural network policy πr : X → A to move a cup
from a start to the expert’s desired goal location. We model input x ∈ X ⊆ R12 as the xyz position
of the robot as well as its binary gripper state (open or closed) across the previous 3 timesteps. The
labels are actions, a ∈ A ⊆ R4, represented as next xyz position and gripper state. The robot always
starts at an initial x with the gripper state closed (holding a cup) and must keep holding the cup while
moving it to the unknown goal location that the expert prefers; let {g0, g1} be two such goals. Before
the first interactive deployment (i = 0), we simulate the expert as initially giving demonstrations
placing the cup at g0, where πh

i=0(x) = x + ω g0−x
maxd(|g0−x|) , where maxd(·) is a maximum over

dimensions. The step size is regulated to be at most ω = 0.01. The initial robot policy πr
i=0 is trained

on a dataset D0 of 10 expert trajectories with synthetically injected noise drawn from N (1, 0.5) for
robustness as in (Laskey et al., 2017). See Appendix D for policy implementation details.

Simulated Expert Policies. To induce controlled distribution shift, we study three expert policies
(left, column of Figure 5). (1) Stationary: the expert has a fixed goal, g0, across all deployment
episodes. (2) Shift: the expert goal shifts from g0 to g1 at deployment episode i = 5. For example, the
expert may have decided that a different cup location is easier to reach. (3) Drift: expert’s goal slowly
drifts from g0 to g1 over the course of deployment episodes (in Figure 5 the drift from g0 → g1a
occurs at episode i = 5, g1a → g1b occurs at episode i = 8, and g1b → g1 occurs at episode i = 11).
For example, the expert may start with a conservative goal location initially (e.g., a goal nearby) and
incrementally move the cup closer and closer to their target goal that may be further out of reach.

Interactive Deployment Episodes & Learner Re-training. We consider M = 15 deployment
episodes before re-training the learner. Each deployment episode has two interactive task executions.
The task ends when the cup has reached the correct goal position, g∗, or when the maximum timesteps
(100) have been reached. The expert answers queries with optimal actions under their current
policy ah = πh

i (x). Following DAgger (Ross et al., 2011), after each deployment episode, the
state-action pairs where the expert provided action labels are aggregated into the training dataset,
forming aggregated buffer Di+1 for the next deployment episode i+ 1. We constrain the size of the
replay buffer to 300 datapoints, dropping the old experiences.

Methods. We compare ConformalDAgger to EnsembleDAgger (Menda et al., 2019). Con-
formalDAgger uses an uncertainty threshold τ = 0.09, temperature β = 100, lookback window
k = 100, lr = 0.6, and initial qlo,hi0 = 0.01. The uncertainty threshold τ is heuristically tuned to ask
few, but infrequent questions in the first interactive deployment episode. EnsembleDAgger queries an
expert online when there is high action prediction variance across an ensemble of learner policies, and
when a safety classifier detects dissimilarity between expert and robot actions. We use 3 ensemble
members and an uncertainty threshold of τ = 0.06 for the ensemble disagreement (selected in a
similar manner to ConformalDAgger) and a safety classifier threshold of 0.03.

Metrics. We measure the quality of our uncertainty quantification via the miscoverage rate and
human effort via the intervention percentage of the deployment trajectory. We compute the
miscoverage for EnsembleDAgger using three times the standard deviation as the prediction interval.
We measure the quality of the learned policy via two metrics. Decision deviation simulates the
learner’s behavior under its current policy and queries the expert at each learner state to obtain an
expert action label. We measure the average L2 distance between the predicted and expert action.
Trajectory deviation forward simulates both the expert and the learner acting independently under
their policies, starting from the same initial x. We compare the L2 distance between the trajectories.

5.2 EXPERIMENTAL RESULTS

We focus results on infrequent human-gated feedback where P(obsht = 1 | xt) = 0.2,∀t. In
Appendix D, we present experiments with frequent (=0.9) and partial (=0.5) feedback. Irrespective of
the human-gated likelihood, the learner can always actively ask for feedback based on P(obsrt | xt).
Takeaway 1: When the expert shifts, ConformalDAgger asks for more help immediately
compared to EnsembleDAgger, enabling the algorithm to more quickly align to the expert.
Consider deployment episode i = 5 where the expert shifts from goal 0 to goal 1 (center row, Figure
5). ConformalDAgger immediately increases the number of expert feedback requests: before shift,
the expert intervened ∼20% of the time but in the 5th episode they intervene ∼60% of the time. In
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Figure 5: Simulated Robot Results. When the expert shifts (middle row) or drifts (bottom),
ConformalDAgger increases the number of requests for expert intervention compared to Ensem-
bleDAgger, decreasing miscoverage and minimizing expert deviation after re-training. With a
stationary expert (top row), both algorithms are similar. Shading represents std. error across 10 seeds.

contrast, EnsembleDAgger remains close to ∼30%. Relatedly, ConformalDAgger has consistently
lower miscoverage rate (max = 0.4 at shift; converges to 0.2) compared to the baseline (max = 1.0 at
shift, converges to 0.4). Due to the extra solicited feedback, ConformalDAgger’s ultimate decision
and trajectory deviations are minimized in the subsequent retrained policies.
Takeaway 2: ConformalDAgger automatically asks for more help each time the expert drifts.
In the bottom row of Figure 5, we see ConformalDAgger maintain a similar level of queries as
EnsembleDAgger during the first shift (at episode 5) and last shift (episode 11) but increases
feedback during the intermediate shift (at episode 8). Despite these similarities, EnsembleDAgger’s
miscoverage rate is consistently higher than ConformalDAgger’s and EnsembleDAgger’s re-trained
policy on average does not adapt as quickly (with higher expert decision and trajectory deviation).
We hypothesize that this is because ConformalDAgger asks frequent questions consistently across all
seeds compared to EnsembleDAgger (i.e. lower variance in Fig 5).
Takeaway 3: With a stationary expert, ConformalDAgger and EnsembleDAgger are similar. We
find that without distribution shift (top row, Figure 5), both methods ask for minimal help (staying
near the 20% human-gated probability), and achieve similar performance in alignment to the expert.

6 HARDWARE EXPERIMENTS

Finally, we deployed ConformalDAgger in hardware on a 7 degree-of-freedom robotic manipulator
that uses a state-of-the-art Diffusion Policy (Chi et al., 2023) trained via IL to perform a sponging
task (Figure 1). The goal of our hardware experiments is to demonstrate how our approach can scale
to a high-dimensional, real-world policy and understand how ConformalDAgger enables the robot
learner to query a real human teleoperator. Our goal is to train the robot to perform a real-world
cleaning task where it wipes up a line drawn by an Expo marker on a whiteboard with sponge.

Human Expert. The human expert teleoperates the robot via a Meta Quest 3 remote controller. They
initially provide 100 demonstrated trajectories moving in a straight-line path along the marker line
to construct the initial training dataset, D0. We model human-gated interventions with probability
P(obsht = 1 | xt) = 0.2, ∀t. To control this rate, our interface queries the user with 20% probability
at the any timepoint along deployment to simulate that consistent independent intervention rate. We
induce a potential distribution shift during interactive deployment episodes by changing the expert’s
wiping strategy from a straight line to a zig-zag pattern.

Learner Policy. We represent the robot’s policy as a CNN-based diffusion policy (Chi et al., 2023).
The policy predicts 16 future actions, where each action is an end-effector position and quaternion
orientation. The policy takes as input the current and previous image observations from the wrist
and third-person camera. Image observations are encoded using a ResNet-18 visual encoder (trained
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Figure 6: Hardware Robot Results. (left) ConformalDAgger increases the number of questions
asked when the expert shifts in their strategy while Ensemble maintains a very similar question asking
profile. (right) Qualitatively, ConformalDAgger can more effectively learn the new zigzag strategy.

end-to-end with the diffusion policy) and the action-generating process is conditioned on encoded
observation features with FiLM (Perez et al., 2018). The initial policy πr

0 is trained for 60K iterations
(training parameters in Appendix Sec E.1).

The robot is deployed to interactively execute the task 50 times after which its policy is retrained. This
is an interactive deployment where the robot queries the user via our ConformalDAgger algorithm, or
the user can independently intervene intermittently. During expert feedback, the human teleoperates
the robot for a sequence of 16 timesteps, after which, if the robot doesn’t ask for feedback, control is
handed back over to the robot. After the interactive deployment, the initial learner policy is fine-tuned
for an additional 60K iterations. We reset the learning-rate schedule, aggregate datapoints at which
the expert gave feedback, and cap the training buffer size at 12k most recent input-action pairs.

ConformalDAgger Hyperparameters. We apply IQT on only the predicted end-effector position,
because we reason about nonconformity via the signed residual in Euclidean space. We initialize
qlo0 , qhi0 = 0.01, our desired coverage level is α = 0.1, and γt = 0.15B̂t, where the lookback window
for B̂t is 20. We use a simple model for P(obsr | xt) = 1 that asks for help if the L2 norm of the
uncertainty interval Ct(xt) exceeds threshold τ = 0.07.

Baseline. Because the diffusion policy implicitly represents the action distribution present in the
training data, we sample from the policy N=3 times and evaluate variance over the predicted action in
order to capture the notion of epistemic uncertainty. We consider this an implicit EnsembleDAgger
(Wolleb et al., 2022). Our implicit EnsembleDAgger implementation does not use the safety classifier.
EnsembleDAgger’s uncertainty threshold is 0.0005, tuned such that the learner asks occasional but
not excessive questions. EnsembleDAgger and ConformalDAgger use the same initial learner policy.

Results. The left of Figure 6 shows quantitative results for both methods. ConformalDAgger
increases the cumulative number of interventions up to about 100 timesteps of human feedback when
interacting with the shifted expert (who switches to a zig-zag pattern) compared to the stationary
expert (who always wipes in a straight line) which reaches a maximum of 40 timesteps. On the other
hand, EnsembleDAgger maintains a very similar question-asking profile (Figure 6) for both the
stationary and shifted expert, near 60 timesteps. To better understand this, we analyzed Figure 1,
which shows ConformalDAgger engaging with each type of expert in one interactive deployment
episode. Here, we see how ConformalDAgger does have uncertainty when interacting with the
stationary expert (due to inherent noise in the VR-teleoperated intermittent human interventions) but
the robot’s uncertainty never rises above the threshold where it initiates expert feedback. This is in
stark contrast to the expert shift scenario (right of Figure 1) where half-way through the deployment
episode the uncertainty intervals become large enough to trigger robot asking for help. On the other
hand, EnsembleDAgger requests more human interventions than ConformalDAgger at the start of
the trajectory (as seen by the slope of cumulative interventions in Figure 6) but then plateaus. We
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hypothesize that this may be because the training demonstrations have low variance while the sponge
is in contact with the whiteboard, but higher variance as the robot approaches the table. Because
EnsembleDAgger’s uncertainty is uncalibrated to the deployment-time expert’s data, it is unable to
identify the need for additional feedback when it reaches the whiteboard.

Qualitative results are shown on the right of Figure 6. As expected, with ConformalDAgger and
EnsembleDAgger rollouts from the policies remain aligned with the stationary expert when retrained.
However, under the shifted expert, rollouts from the retrained ConformalDAgger policy exhibit a
more distinct zig-zag pattern, compared to EnsembleDAgger, likely because the EnsembleDAgger
dataset has less datapoints because it does not ask for as much help.

7 CONCLUSION

In this work, we study uncertainty quantification for imitation learned policies that encounter dis-
tribution shift. We first extend uncertainty quantification via online conformal prediction to handle
intermittent labels, such as those observed in interactive imitation learning. We then propose Con-
formalDAgger, a unification of our online conformal prediction algorithm with interactive imitation
learning. Our approach provides asymptotic coverage guarantees for deployed end-to-end policies,
uses the calibrated uncertainty measure to detect expert distribution shifts and actively query for more
feedback, and empirically enables the robot learner update its policy to better align with the shifted
expert distribution.
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APPENDIX

A PROOF OF PROPOSITION 1

We will start by proving the following lemma. Recall that B is the upper bound on q1 ∈ [0, B], and
st ∈ [0, B] by definition.

Lemma 1. For all t, we have −αNt−1 ≤ qt ≤ B + (1− α)Nt−1, where Nt = max1≤r≤t
γr

pr
. B is

the upper bound on q1 ∈ [0, B] and st ∈ [0, B].

Proof. q1 ∈ [0, B] by assumption, so the lemma is satisfied at t = 1. Assume qt ∈ [−αNt−1, B +
(1 − α)Nt−1]. Now, for qt+1, we consider Case 1, where obst = 0, which means that qt+1 = qt,
so qt+1 lies within the range [−αNt−1, B + (1 − α)Nt−1]. Since Nt ≥ Nt−1, qt+1 also lies
within the larger range [−αNt, B + (1 − α)Nt], as desired. In Case 2 where obst = 1, qt+1 =
qt+

γt

pt
(errt−α). If we represent ηt := γt

pt
, we obtain the constant-feedback quantile tracking update:

qt+1 = qt + ηt(errt − α), with variable ηt instead of γt. Then, Lemma 1 in Angelopoulos et al.
(2024b), with Nt = max1≤r≤t ηt bounds qt+1 within the range [−αNt, B + (1− α)Nt].

Next, we proceed to show how we can leverage the existing quantile tracking results to derive our
results with intermittent feedback.

Proof. First, we take expectations only with respect to obst conditional on xt, errt, and all other
randomness, noting in particular that obst is independent of everything else given xt and has a
Bernoulli distribution with mean pt.

We will abbreviate the left-hand side by E[qT+1|DT+1], where DT+1 := {errt, xt}t≤T+1, and use
Eobs1:t = Eobs1∼p1,...,obst∼pt

to denote this conditional expectation for brevity below:

Eobs1:t [qT+1 − qr|DT+1] = Eobs1:t [qT+1|DT+1]− Eobs1:r [qr|Dr] (9)

= Eobs1:t [q1 +

T∑
t=1

γt
pt
(errt − α)obst|DT+1]− Eobs1:r [q1 +

r∑
t=1

γt
pt
(errt − α)obst|Dr] (10)

= q1 +

T∑
t=1

γt
pt
(errt − α)pt −

(
q1 +

r∑
t=1

γt
pt
(errt − α)pt

)
(11)

=

T∑
t=r

γt(errt − α). (12)

Given the definition of ∆, we have that γ−1
t =

∑t
r=1 ∆r for all t ≥ 1. So∣∣∣∣∣ 1T

T∑
t=1

(errt − α)

∣∣∣∣∣ = | 1T
T∑

t=1

( t∑
r=1

∆r

)
γt(errt − α)| (13)

=

∣∣∣∣∣ 1T
T∑

r=1

∆r

( T∑
t=r

γt(errt − α)
)∣∣∣∣∣ (14)

=

∣∣∣∣∣ 1T
T∑

r=1

∆r

(
Eobs1:t [qT+1 − qr|DT+1]

)∣∣∣∣∣ . (15)

By Lemma 1, this expected difference is bounded by B + (1− α)NT − (−αNT ):

Eobs1:T+1
[qT+1 − qr|DT+1] ≤ B + max

1≤t≤T

γt
pt
. (16)
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In other words, we can drop the expectation via Lemma 1 and consider the worst case bound on
qT+1 − qr. Thus, ∣∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣∣ ≤ 1

T

T∑
r=1

|∆r|
(
B + max

1≤t≤T

γt
pt

)
(17)

=
1

T
||∆1:T ||1

(
B + max

1≤t≤T

γt
pt

)
. (18)

This completes the proof.

A.1 SPECIAL CASE: WHEN γt = pt

Next, given the quantile tracking update with an intermittent observation model, we consider what
would happen if γt was set as pt. When γt = pt, then quantile tracking update becomes qt+1 =
qt + (errt − α)obst and max1≤t≤T

γt

pt
= 1.

Under Proposition 1, IQT with γt = pt gives the following finite time coverage bound:∣∣∣∣∣ 1T
T∑

t=1

errt − α

∣∣∣∣∣ ≤ B + 1

T
||∆1:T ||1 (19)

where the sequence ∆ is defined with values ∆1 = γ−1
1 and ∆t = γ−1

t − γ−1
t−1 for all t ≥ 2.

B INTERMMITTENT ADAPTIVE CONFORMAL INFERENCE

We show in this section that intermittent observation of ground truth labels can be extended to
Adaptive Conformal Inference (ACI) (Gibbs & Candes, 2021). To facilitate understanding, we briefly
summarize ACI and discuss our extension Intermittent Adaptive Conformal Inference (IACI).

Setup: Quantile Regression (QR). Similar to IQT, consider an arbitrary sequence of data points
(xt, yt) ∈ X × Y , for t = 1, 2, ..., that are not necessarily I.I.D. Our goal in ACI is to also produce
prediction sets on the output of any base prediction model such that the sets contain the true label
with a specified miscoverage rate α. Mathematically, at each time t, we observe xt and seek to cover
the true label yt with a set Ct(xt), which depends on a base prediction model, f̂ : X → Y . We
will discuss ACI with a conformal quantile regression Romano et al. (2019) backbone. The base
model takes as input the current xt and outputs prediction ŷt as well the estimated upper and lower
conditional quantiles:

{q̂αlo
(xt), ŷt, q̂αhi

(xt)} ← f̂(xt), ∀(xt, yt), (20)

where q̂αlo
(xt) is an estimate of the αlo-th conditional quantile and q̂αhi

(xt) is the αhi-th quantile
estimate. During training, q̂αlo

(xt) is learned with an additional Pinball loss Koenker & Bassett Jr
(1978); Romano et al. (2019).

Adaptive Conformal Inference (ACI). At each time t, we compute the nonconformity score st as:

s(xt, yt; f) = max{q̂αlo
(xt)− yt, yt − q̂αhi

(xt)}, (21)

which is the coverage error induced by the regressor’s quantile estimates.

Let St be the set of conformity scores for all data points through time t in Dcalib. In general, the
magnitude of s(xt, yt; f̂) is determined by the miscoverage error and its sign is determined by if the
true value of yt lies outside or inside the estimated interval.

Mathematically, the calibrated prediction interval for Yt is:

Ct(xt) =
[
q̂αlo

(xt)− Q̂St
(1− αt), (22)

q̂αhi
(xt) + Q̂St(1− αt)

]
, (23)
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where the Q̂St
(1 − αt) := (1 − αt)(1 + 1

|Dcalib| )-th adaptive empirical quantile of St = St−1 ∪
s(xt, yt; f̂). The empirical quantile is defined as the following (where k is the lookback window):

Q̂St
(c) := inf

{
m :

 1

|Dt−k:t|
∑

(xi,yi)∈Dt−k:t

1{s(Xi,Yi)≤m}

 ≥ c

}
(24)

Given the non-stationarity of the data distribution, ACI examines the empirical miscoverage frequency
of the previous interval, and then decreases or increases a time-dependent αt. Fixing step size
parameter γ > 0, ACI updates

αt+1 := αt + γ(α− errt) (25)

ACI Coverage Guarantee. The adaptive quantile adjustments made in ACI provide the following
coverage guarantee: ∣∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣∣ ≤ max{α1, 1− α1}+ γ

Tγ
(26)

obtaining the desired α coverage frequency without making an assumptions on the data-generating
distribution (Proposition 4.1 in Gibbs & Candes (2021)). As T approaches∞, limT→∞

1
T

∑T
t=1 errt

approaches α. This guarantees ACI gives the 1−α long-term empirical coverage frequency regardless
of the underlying data generation process.

B.1 INTERMITTENT ADAPTIVE CONFORMAL PREDICTION

To achieve Intermittent Adaptive Conformal Inference (IACI), we update αt at each timestep t with
Equation 27:

αt+1 = αt +
γ

pt
(α− errt)obst (27)

Recall errt = 1yt /∈Ct(xt) and obst represents whether yt was observed at timestep t, and pt =
P(obst|xt) ∈ (0, 1]. The calibrated prediction interval for yt becomes:

Ct(xt) =
[
q̂αlo

(xt)− Q̂Sobs
t

(1− αt), q̂αhi
(Xt) + Q̂Sobs

t
(1− αt)

]
, (28)

where Q̂Sobs
t

(1 − αt) := (1 − αt)(1 + 1
|Dcalib| )-th adaptive empirical quantile of Sobs

t , the set of
nonconformity scores that have been observed, weighted by their probability of observation. Since we
will only observe feedback with probability pt at each timestep, our set of nonconformity values will
not be the full set of scores at every timestep. Instead, we have access to some subset of nonconformity
scores Sobs

t , where pi is the probability of element s(xi, yi; f) being in the subset Sobs
t for 1 ≤ i ≤ t.

We define Q̂Sobs
t

(c):

Q̂Sobs
t

(c) := inf

{
m :

 1

|Dt−k:t|
∑

(xi,yi)∈Dt−k:t

1

pi
· obsi · 1{s(xi,yi)≤m}

 ≥ c

}
(29)

At best, we can say that in expectation, the inclusion criteria for any element in the summation
term is equivalent for the summation in Q̂obs

t (x) and the summation in Q̂t(x): Eobsi∼pi
[ 1
pi
· obsi ·

1{s(Xi,Yi)≤m}] = 1{s(Xi,Yi)≤m}.
Proposition 2. IACI Coverage Guarantee. With this intermittent feedback update, with probability
one, where Mt = min {p1, ..., pt} ∈ (0, 1], we have that for all T ∈ N:∣∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣∣ ≤ max{α1, 1− α1}+ γ
MT+1

Tγ
(30)

At limT→∞
1
T

∑T
t=1 errt approaches α, given M∞ = min {p1, ..., p∞} ∈ (0, 1]. This guarantees

IACI gives the 1 − α long-term empirical coverage frequency regardless of the underlying data
generation process. The proof follows from Gibbs & Candes (2021) as is described in the next
subsection (Section B.2).
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B.2 PROOF FOR INTERMITTENT ADAPTIVE CONFORMAL INFERENCE

Assumptions. We will assume throughout that with probability one, α1 ∈ [0, 1], α ∈ (0, 1),
pt ∈ (0, 1] ∀1 ≤ t ≤ ∞, and Q̂obs

t (x) is non-decreasing with Q̂Sobs
t

(c) = −∞ for all c < 0, and
Q̂Sobs

t
(c) =∞ for all c > 1.

Lemma 2. With probability one, we have that ∀t ∈ [1, T ],

αt ∈ [− γ

MT
, 1 +

γ

MT
] (31)

where MT = min1≤r≤T pr.

Proof. Observe that

sup1≤t≤T |αt+1 − αt| = sup1≤t≤T |
γ

pt
(α− errt)| (32)

≤ sup1≤t≤T

γ

MT
|(α− errt)| =

γ

MT
sup1≤t≤T |(α− errt)| (33)

<
γ

MT
(34)

The rest of the proof follows from Lemma 4.1 in Gibbs & Candes (2021). We will write it out
explicitly here.

Lower Bound. Assume towards contradiction that with positive probability the set {αt}t∈[1,T ] is
such that inft∈[1,T ]{αt} < − γ

MT
, which means there exists some element in the set {αt}t∈[1,T ]

such that the element is less than − γ
MT

. Let αt+1 be the first element in set {αt}t∈[1,T ] such that
αt+1 < − γ

MT
.

We know by assumption that α1 ∈ [0, 1], so αt+1 cannot be the first value. So αt > αt+1, else the
latter would not be the first element such that αt+1 < − γ

MT
. Since we know that αt − αt+1 < γ

MT

(from the observation above), then

αt − αt+1 <
γ

MT
(35)

⇔ αt <
γ

MT
+ αt+1 (36)

⇔ αt <
γ

MT
+ αt+1 <

γ

MT
+ (− γ

MT
) (37)

⇔ αt < 0. (38)

However, if αt < 0, then Q̂Sobs
t

(1− αt) =∞⇒ errt = 0. This is because the quantile will be the
trivially large infinite quantile, meaning there will definitely be no undercoverage at t. Since γ

pt
α is

positive by definition,

⇒ αt+1 = αt +
γ

pt
(α− errt) = αt +

γ

pt
(α− 0) ≥ αt (39)

We have reached a contradiction with αt+1 being the first infimum value reached.

Upper Bound. The upper bound argument is symmetric but we will write it out explicitly. Assume
towards contradiction that with positive probability the set {αt}t∈[1,T ] is such that supt∈[1,T ]{αt} >
1+ γ

MT
, which means there exists some element in the set {αt}t∈[1,T ] such that the element is greater

than 1 + γ
MT

. Let αt+1 be the first element in set {αt}t∈[1,T ] such that αt+1 > 1 + γ
MT

.

We know by assumption that α1 ∈ [0, 1], so αt+1 cannot be the first value. So there exists some
αt < αt+1, where αt+1 > 1 + γ

MT
. Since we know that αt+1 − αt <

γ
MT

(from the observation
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above), then

αt+1 − αt <
γ

MT
(40)

⇔ −αt <
γ

MT
− αt+1 (41)

⇔ αt > αt+1 −
γ

MT
> (1 +

γ

MT
)− γ

MT
(42)

⇔ αt > 1. (43)
(44)

However, if αt > 1, then Q̂Sobs
t

(1− αt) = −∞⇒ errt = 1. This is because the quantile will be the
trivially small negative infinite quantile, meaning there will definitely be miscoverage at t. Then,

⇒ αt+1 = αt +
γ

pt
(α− errt) = αt +

γ

pt
(α− 1) ≤ αt (45)

since γ
pt
(α− 1) is is negative by definition of α. We have reached a contradiction with αt+1 being

the first supremum value reached.

Lemma 2 will enable us to prove Proposition 2. The proof is derivative of the constant feedback ACI
proof in (Gibbs & Candes, 2021), and the key idea is to bound the expectation of αt+1.

Proof. Examine the expectation of αt+1, conditional on DT+1 := {errt, pt}t≤T+1:

Eobs1∼p1,...,obst∼pT+1
[αT+1|DT+1] = α1 + γ

T+1∑
t=1

(α− errt) (46)

We will abbreviate the left hand side by E[αT+1|DT+1]. Because the expected value cannot exceed
the range of the value of αT+1, we infer that E[αT+1|DT+1] ∈ [− γ

MT+1
, 1 + γ

MT+1
].

First, we observe from Lemma 2 that

E[αT+1|DT+1] = α1 +

T∑
t=1

γ(α− errt) ∈ [− γ

MT+1
, 1 +

γ

MT+1
] (47)

=⇒ −
T∑

t=1

γ(α− errt) = α1 − E[αT+1|DT+1] (48)

=⇒

∣∣∣∣∣ 1T
T∑

t=1

errt − α

∣∣∣∣∣ = |α1 − E[αT+1|DT+1]|
Tγ

. (49)

To bound the right hand side above, consider in turn the two cases of α1 − E[αT+1|DT+1] ≥ 0 and
α1 − E[αT+1|DT+1] < 0.

Starting with Case 1,

α1 − E[αT+1|DT+1] ≥ 0⇒ α1 ≥ E[αT+1|DT+1]⇒ αT+1 ∈ [− γ

MT+1
, α1]. (50)

This case corresponds to the following equivalence: |α1 − E[αT+1|DT+1]| = α1 − E[αT+1|DT+1].

Negating αT+1 ≥ − γ
MT+1

, we get −αT+1 ≤ γ
MT+1

. Thus,

|α1 − E[αT+1|DT+1]| = α1 − E[αT+1|DT+1] ≤ α1 +
γ

MT+1
(51)

=⇒ |α1 − E[αT+1|DT+1]|
Tγ

≤
α1 +

γ
MT+1

Tγ
. (52)

19



Under review

In Case 2,

α1 − E[αT+1|DT+1] < 0⇒ α1 < E[αT+1|DT+1]⇒ E[αT+1|DT+1] ∈ (α1, 1 +
γ

MT+1
]. (53)

This case corresponds to the following equivalence: |α1 − E[αT+1|DT+1]| = E[αT+1|DT+1] −
α1 = −1(α1 − E[αT+1|DT+1). Plugging in E[αT+1|DT+1] < 1 + γ

MT+1
,

|α1 − E[αT+1|DT+1]| = E[αT+1|DT+1]− α1 ≤ 1 +
γ

MT+1
− α1 (54)

|α1 − E[αT+1|DT+1]|
Tγ

≤
(1− α1) +

γ
MT+1

Tγ
. (55)

Lastly, we merge the two cases by taking the maximum over {α1, 1− α1} to come up with an upper
bound that covers both cases.∣∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣∣ = |α1 − E[αT+1|DT+1]|
Tγ

≤
max{α1, 1− α1}+ γ

MT+1

Tγ
. (56)

Taking the limit as T → ∞, if M∞ is bounded, we get limT→∞

∣∣∣ 1T ∑T
t=1 errt − α

∣∣∣ = 0, as
claimed.

C EXTENDED EXPERIMENTS: INTERMITTENT QUANTILE TRACKING

We experiment with these four predictors because of their use in prior conformal literature (An-
gelopoulos et al., 2024a) and in order to ensure that under different base model conditions, IQT
maintains coverage close to the desired level. (1) Autoregressive (AR) model with 3 lags, (2) Theta
model with θ = 2 (Assimakopoulos & Nikolopoulos, 2000), (3) Prophet model Taylor & Letham
(2018), and (4) Transformer model (Vaswani et al., 2017). Consistent with prior works, for all base
models except for transformer, we retrain the base model after each timestep; for the transformer, we
retrain every 100 timesteps. We set lookback window k = 100 timesteps for the Google and Amazon
stock price data, and k = 300 for the Elec2 dataset.

Amazon stock price data under partial (pt = 0.5) feedback. Figure 7 shows the prediction interval
sizes for 1 seed, and coverage averaged over 5 seeds for Amazon stock price data under partial
(pt = 0.5) feedback. We see that the interval size for IQT-pd is larger than IQT-pi for high learning
rate lr = 1, but the size of intervals is comparable for smaller learning rates. Table 2 shows the
performance metrics averaged over 5 seeds.

lr = 1
Interval SizeCoverage

lr = 0.1
Interval SizeCoverage

lr = 0.01
Interval SizeCoverage

1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000

1.0

0.0
1.0

0.0

1000

500

1000

500

IQT-pi

IQT-pd

P = 0.5: AMZN
Figure 7: Amazon stock price data under partial (pt = 0.5) feedback. We show the prediction interval
sizes for 1 seed, and coverage averaged over 5 seeds for Amazon stock price data under partial
observations.

Amazon stock price data under partial (pt = 0.9) feedback. Figure 8 shows the prediction interval
sizes for 1 seed, and coverage averaged over 5 seeds for Amazon stock price data under frequent
(pt = 0.9) feedback. We see that the interval size for IQT-pd and IQT-pi are very similar across
learning rates. Table 3 shows the performance metrics averaged over 5 seeds.
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Table 1: IQT on Amazon Stocks (infrequent observations): Trends Across Models. We test four
base models, set pt = 0.1,∀t to simulate seeing the true price only 10% of the time, and report the
mean across 5 seeds.

Metric lr AR Base Model Prophet Base Model Theta Base Model Transformer Base Model
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Coverage 1.0 0.903 0.937 0.906 0.935 0.899 0.921 0.902 0.923
0.1 0.876 0.903 0.876 0.906 0.815 0.899 0.808 0.902

0.01 0.690 0.876 0.690 0.876 0.430 0.815 0.360 0.808
Longest err seq 1.0 13.2 13.2 11.6 30.6 27 41.2 28.8 30

0.1 6.8 20.8 10 11.6 51.8 27 89 28.8
0.01 12.6 6.8 13.8 10 145.2 51.8 212.8 89

Avg set size 1.0 47.452 425.435 46.056 414.977 105.040 711.829 131.025 982.469
0.1 16.872 47.452 16.495 46.056 82.463 105.040 118.040 131.025

0.01 9.428 16.872 9.470 16.495 35.458 82.463 46.929 118.040

Table 2: IQT on Amazon Stocks (partial observations): Trends Across Models. We test four base
models, set pt = 0.5,∀t to simulate seeing the true price only 50% of the time, and report the mean
across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.902 0.905 0.901 0.904 0.906 0.904 0.900 0.904
0.1 0.891 0.896 0.883 0.893 0.890 0.895 0.879 0.885

0.01 0.846 0.869 0.737 0.812 0.843 0.870 0.705 0.796
Longest err seq 1.0 5.6 5.8 7.4 8 5.6 6.6 7.8 8

0.1 4.6 4 12.8 8.2 7.6 5 23.4 11.4
0.01 7.2 7 89.4 50.6 10 10 191.2 97.6

Avg set size 1.0 43.816 78.447 76.013 139.875 44.449 77.741 100.127 183.529
0.1 17.535 19.918 66.940 55.233 17.581 19.854 92.513 72.867

0.01 13.684 14.952 70.972 81.854 13.678 15.085 99.109 118.457

Table 3: IQT on Amazon Stocks (frequent observations): Trends Across Models. We test four
base models, set pt = 0.9,∀t to simulate seeing the true price 90% of the time, and report the mean
across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.902 0.903 0.901 0.903 0.902 0.902 0.903 0.902
0.1 0.894 0.894 0.886 0.886 0.8932 0.894 0.885 0.887

0.01 0.870 0.873 0.797 0.805 0.871 0.873 0.786 0.798
Longest err seq 1.0 2.8 2.6 3 3.6 3.2 3.6 3.2 3

0.1 3.6 3.8 7 6.6 5.4 5 10.6 9
0.01 7 7 57.8 44.2 10 10 97.8 98.4

Avg set size 1.0 43.221 46.624 71.646 78.889 42.979 46.270 93.068 103.777
0.1 17.663 17.982 54.235 52.265 17.687 18.121 69.700 66.835

0.01 14.627 14.832 79.736 81.078 14.732 14.954 116.272 117.762
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Figure 8: Amazon stock price data under frequent (pt = 0.9) feedback. We show the prediction
interval sizes for 1 seed, and coverage averaged over 5 seeds for Amazon stock price data under
partial observations.

Table 4: IQT on Google Stocks (infrequent observations): Trends Across Models. We test four
base models, set pt = 0.1,∀t to simulate seeing the true price only 10% of the time, and report the
mean across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.925 0.949 0.928 0.929 0.929 0.929 0.907 0.927
0.1 0.910 0.925 0.897 0.928 0.906 0.929 0.793 0.907

0.01 0.812 0.910 0.639 0.897 0.692 0.906 0.234 0.793
Longest err seq 1.0 11.4 27.8 21.4 42.4 17.2 29.2 23.2 29

0.1 6 11.4 35.6 21.4 53.4 17.2 109.2 23.2
0.01 9.2 6 69.6 35.6 103 53.4 873.4 109.2

Avg set size 1.0 87.834 911.476 134.392 1017.708 93.068 815.183 218.270 1445.050
0.1 24.305 87.834 104.224 134.392 49.364 93.068 269.950 218.270

0.01 15.070 24.305 54.653 104.224 28.910 49.364 109.453 269.950

Table 5: IQT on Google Stocks (partial observations): Trends Across Models. We test four base
models, set pt = 0.5,∀t to simulate seeing the true price only 50% of the time, and report the mean
across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.909 0.909 0.902 0.908 0.906 0.903 0.902 0.899
0.1 0.905 0.905 0.896 0.892 0.899 0.901 0.901 0.894

0.01 0.891 0.901 0.858 0.887 0.864 0.890 0.661 0.809
Longest err seq 1.0 5.2 6.4 8 7.6 5.4 7.8 8.2 8.4

0.1 4 4 13.8 11 13.8 7.4 16 13.2
0.01 6 6 49.4 32.2 80.8 55.6 239.8 104.2

Avg set size 1.0 59.236 101.424 91.522 168.522 64.736 116.381 131.415 241.408
0.1 22.021 25.670 71.972 63.493 36.04 34.893 156.157 106.766

0.01 18.820 19.830 91.394 96.245 42.575 43.364 246.053 276.761

C.1 GOOGLE STOCK PRICE DATASET RESULTS

For the Google stock price dataset, Tables 4, 5, and 6 show the results for infrequent, partial, and
frequent feedback. The differences between IQT-pd and IQT-pi for the Google dataset are very
similar to the Amazon stock price dataset.

C.2 ELEC2 DATASET RESULTS

For the Elec2 dataset, Tables 7, 8, and 9 show the results for infrequent, partial, and frequent feedback.

D FURTHER EXAMINATION: SIMULATED EXPERIMENTS

Implementation Details. Both EnsembleDAgger and ConformalDAgger are implemented as
7-layer multilayer perceptions (with hidden sizes [64,128,472,512,256,64,42]). We use ReLU
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Table 6: IQT on Google Stocks (frequent observations): Trends Across Models. We test four base
models, set pt = 0.9,∀t to simulate seeing the true price 90% of the time, and report the mean across
5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.903 0.902 0.902 0.903 0.902 0.902 0.902 0.901
0.1 0.897 0.898 0.889 0.889 0.898 0.898 0.892 0.892

0.01 0.895 0.897 0.880 0.881 0.889 0.891 0.791 0.808
Longest err seq 1.0 2.8 3 3.2 2.8 3.6 2.8 3 3.6

0.1 4 4 8 7.8 6.8 6.6 10 9.4
0.01 6 6 32.4 31.4 58 57.6 108.4 105

Avg set size 1.0 53.161 57.376 85.427 93.799 61.876 68.177 121.994 134.782
0.1 21.068 21.564 59.732 57.680 31.262 31.240 106.240 99.712

0.01 19.096 19.396 94.682 94.370 43.206 42.881 278.926 279.124

Table 7: IQT on Elec2 Dataset (infrequent observations): Trends Across Models. We test four
base models, set pt = 0.1,∀t to simulate seeing the true price only 10% of the time, and report the
mean across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.918 0.908 0.900 0.934 0.909 0.949 0.903 0.904
0.1 0.897 0.918 0.901 0.900 0.911 0.909 0.908 0.903

0.01 0.809 0.897 0.665 0.901 0.857 0.911 0.663 0.908
Longest err seq 1.0 10.4 24.8 19.6 28.6 15.2 24.4 20.2 25.4

0.1 4 10.4 19.2 19.6 9.2 15.2 10.8 20.2
0.01 5.2 4 29.8 19.2 13 9.2 29.4 10.8

Avg set size 1.0 0.120 1.867 0.846 6.374 0.252 2.489 0.905 6.565
0.1 0.091 0.120 0.528 0.846 0.085 0.252 0.556 0.905

0.01 0.061 0.091 0.307 0.528 0.059 0.085 0.349 0.556

Table 8: IQT on Elec2 Dataset (partial observations): Trends Across Models. We test four base
models, set pt = 0.5,∀t to simulate seeing the true price only 50% of the time, and report the mean
across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.909 0.905 0.898 0.908 0.907 0.909 0.902 0.899
0.1 0.895 0.896 0.901 0.896 0.901 0.899 0.903 0.897

0.01 0.892 0.894 0.865 0.887 0.899 0.901 0.886 0.903
Longest err seq 1.0 4.6 5.2 8.6 7.4 5.2 6.4 6.8 7.6

0.1 3.8 5 7.2 7.4 5.2 4.8 7.8 7.6
0.01 3.2 2.8 27 14.2 4.2 4.6 11 9.8

Avg set size 1.0 0.187 0.325 0.721 1.304 0.234 0.443 0.738 1.287
0.1 0.093 0.101 0.475 0.4721 0.074 0.087 0.487 0.478

0.01 0.087 0.088 0.481 0.500 0.068 0.070 0.497 0.517

Table 9: IQT on Elec2 Dataset (frequent observations): Trends Across Models. We test four base
models, set pt = 0.9,∀t to simulate seeing the true price 90% of the time, and report the mean across
5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.902 0.901 0.901 0.901 0.902 0.902 0.902 0.902
0.1 0.900 0.902 0.897 0.898 0.897 0.899 0.897 0.898

0.01 0.903 0.903 0.881 0.883 0.893 0.894 0.899 0.902
Longest err seq 1.0 2.6 3 3.8 3.4 2.6 2.8 3.4 3.2

0.1 2.6 2.8 4.6 4.8 4.2 3.8 5.8 5.2
0.01 2.4 2.8 15.6 15 4.6 4.8 10 10

Avg set size 1.0 0.179 0.192 0.677 0.734 0.219 0.243 0.670 0.724
0.1 0.096 0.0977 0.446 0.437 0.070 0.071 0.444 0.438

0.01 0.091 0.092 0.492 0.492 0.066 0.067 0.513 0.518
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activations between each layer. We train using a learning rate of 0.001 and a batch size of 32. We
train the initial policy for 200 iterations, and fine-tune between each interactive deployment episode
for 100 iterations. The EnsembleDAgger safety classifier is implemented as a 4-layer perception
([64,128,64,42]) with ReLU activation between each layer and we apply a sigmoid function on the
output to classify the output.

A closer look at expert shift under pt = 0.2 intermittent feedback . When the expert shift occurs
at episode 5 (Figure 9), the human provides feedback occasionally to the learners which deviates from
the predicted actions. ConformalDAgger increases its calibrated uncertainty based on these human
inputs, and once uncertainty exceeds the threshold, the probability for asking for help converges to 1,
causing the robot to ask for more human feedback such that it can learn the new goal.
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Time 

Time 

ConformalDAgger
EnsembleDAgger

Figure 9: At episode 5, the ConformalDAgger learner uncertainty enables the robot to ask for more
human feedback to gather information about the shifted goal.

Simulated results under partial (pt = 0.5) intermittent feedback . Under pt = 0.5 intermittent
feedback (Figure 10), ConformalDAgger is able to detect the shift and drift more quickly than
EnsembleDAgger. We find that as the ConformalDAgger algorithm under the stationary expert
becomes more noisy has increased miscoverage. This is due to the expert labels decreasing the
conformal parameters, qhi, qlo as the expert gives feedback, causing the intervals to become too small.
Under the short time horizon, the miscoverage rate is higher than the desired level.

Simulated results under frequent (pt = 0.9) intermittent feedback . Under pt = 0.9 intermittent
feedback (Figure 11), both algorithms are able to quickly adapt to expert shift and drift. This
is because both algorithms during deployment are receiving human labels extremely frequently.
Similar to partial feedback, as the ConformalDAgger algorithm under the stationary expert becomes
more noisy has increased miscoverage. ConformalDAgger decreases the value of the conformal
parameters, qhi, qlo as the expert gives feedback, causing the intervals to become too small, giving
miscoverage higher than the desired level.

E IMPLEMENTATION AND TASK DETAILS: REAL EXPERIMENTS

E.1 LEARNING POLICY TRAINING DETAILS

We record robot and human actions at 15hz. The initial policy πr
0 is trained for 60K iterations with

a batch size of 100. We use a weight decay of 1.0e-6, learning rate of 0.0001; for learning-rate
scheduling, we used a cosine schedule with linear warmup (Nichol & Dhariwal, 2021). The number
of training diffusion iterations is 100, and number of inference diffusion iterations is 16. The policy
is trained on an NVIDIA RTX A6000 GPU.
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Stationary Expert π0

Expert Shift π0 → π1

Expert Drift 
π0 → π1a → π1b → π1
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Figure 10: Under pt = 0.5 intermittent feedback, ConformalDAgger learns the shift and drift more
quickly than EnsembleDAgger.
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Figure 11: Under pt = 0.9 intermittent feedback, both ConformalDAgger and EnsembleDAgger
learn the shift and drift quickly.

A look at the real-world feedback request interface. Figure 12 shows the real-world interface
for requesting help from the user during the interactive deployment episodes. The user provides
teleoperated actions via a Meta Quest 3, and the robot’s uncertainty is displayed on a computer screen
next to the robot. When the robot needs help, the robot pauses its execution and presents an alert
notification on the screen.

Sponging Task Specifications. We present the task setup details (Figure 13) so that readers can also
reproduce this task.
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Uncertainty Coverage

Intervention 
Requested!

Figure 12: When the robot needs help, the robot pauses its execution and presents an alert notification
on the screen.
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Figure 13: Sponge task specifications.
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